Stochastically Consistent Caching and Dynamic Duty Cycling for Erratic Sensor Sources

  • Shanzhong Zhu
  • Wei Wang
  • Chinya V. Ravishankar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4026)


We present a novel dynamic duty cycling scheme to maintain stochastic consistency for caches in sensor networks. To reduce transmissions, base stations often maintain caches for erratically changing sensor sources. Stochastic consistency guarantees the cache-source deviation is within a pre-specified bound with a certain confidence level. We model the erratic sources as Brownian motions, and adaptively predict the next cache update time based on the model. By piggybacking the next update time in each regular data packet, we can dynamically adjust the relaying nodes’ duty cycles so that they are awake before the next update message arrives, and are sleeping otherwise. Through simulations, we show that our approach can achieve very high source-cache fidelity with low power consumption on many real-life sensor data. On average, our approach consumes 4-5 times less power than GAF [1], and achieves 50% longer network lifetime.


Sensor Network Duty Cycle Network Lifetime Consistency Requirement Rout Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, Y., Heidemann, J., Estrin, D.: Geography-informed energy conservation for ad hoc networks. In: Proc. of the MobiCom Conf., Italy (2001)Google Scholar
  2. 2.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an aquisitional query processor for sensor networks. In: Proc. of the 2003 ACM SIGMOD Conf., San Diego (2003)Google Scholar
  3. 3.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation service for ad-hoc sensor networks. In: The 5th Symposium on OSDI (2002)Google Scholar
  4. 4.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust communication paradigm for sensor networks. In: Proc. of the ACM/IEEE MobiCom Conf. (2000)Google Scholar
  5. 5.
    Han, Q., Mehrotra, S., Venkatasubramanian, N.: Energy efficient data collection in distributed sensor environments. In: Proc. of the 24th ICDCS Conf. (2004)Google Scholar
  6. 6.
    Sharaf, M.A., Beaver, J., Labrinidis, A., Chrysanthis, P.K.: Tina: A scheme for temporal coherency-aware in-network aggregation. In: Proc. of the 3rd ACM MobiDE Workshop (2003)Google Scholar
  7. 7.
    Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over distributed data streams. In: Proc. of the 2003 ACM SIGMOD, San Diego (2003)Google Scholar
  8. 8.
    Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Hierarchical in-network data aggregation with quality guarantees. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 658–675. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    ASH Transceiver Designer’s Guide (May 2002),
  10. 10.
    Chipcon CC1000 RF Transceiver Datasheet,
  11. 11.
    MPR/MIB Mote Sensor Hardware Users Manual,
  12. 12.
    Zhu, S., Ravishankar, C.V.: Stochastic consistency, and scalable pull-based caching for erratic data sources. In: Proc. of the 2004 VLDB Conf., Toronto, Canada (2004)Google Scholar
  13. 13.
    Bennett, F., Clarke, D., Evans, J.B., Hopper, A., Jones, A., Leask, D.: Piconet: Embedded mobile networking. In: IEEE Personal Communications Magazine (1997)Google Scholar
  14. 14.
    Schurgers, C., Tsiatsis, V., Ganeriwal, S., Srivastava, M.: Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing 1(1) (2002)Google Scholar
  15. 15.
    Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. In: Proc. of the IEEE/ACM MobiCom Conf., Rome, Italy (2001)Google Scholar
  16. 16.
    Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, 2nd edn. Academic Press, London (1975)MATHGoogle Scholar
  17. 17.
    Zhu, S., Ravishankar, C.V.: A scalable approach to approximating aggregate queries over intermittent streams. In: Proc. of the 2004 SSDBM Conf., Santorini Island, Greece (2004)Google Scholar
  18. 18.
    Alonso, R., Barbara, D., Molina, H.: Data caching issues in an information retrieval system. ACM Trans. Database Systems 15(3) (1990)Google Scholar
  19. 19.
    Zou, H., Soparkar, N., Jahanian, F.: Probabilistic data consistency for wide-area applications. In: Proc. of the 16th ICDE Conf. (2000)Google Scholar
  20. 20.
    Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocols for wireless microsensor networks. In: Proc. of the Hawaii Intl. Conf on Systems Sciences (2000)Google Scholar
  21. 21.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless sensor networks. In: Proc. of the 21st InfoCom Conf., New York, NY (2002)Google Scholar
  22. 22.
    Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-driven data acquisition in sensor networks. In: Proc. of the 30th VLDB (2004)Google Scholar
  23. 23.
    Hartl, G., Li, B.: infer: A baysian inference approach towards energy efficient data collection in dense sensor networks. In: Proc. of the 25th ICDCS Conf. (2005)Google Scholar
  24. 24.
    Huang, S.C., Jan, R.H.: Energy-aware load balanced routing schemes for sensor networks. In: Proc. of the 10th Intl Conference on Parallel and Distributed Systems, Newport Beach, California (2004)Google Scholar
  25. 25.
    Woo, A., Culler, D.E.: A transmission control scheme for media access in sensor networks. In: Proc. of the MobiCom Conf. (2001)Google Scholar
  26. 26.
    Hong, X., Gerla, M., Hanbiao, W., Clare, L.: Load balanced, energy-aware communications for mars sensor networks. In: Proc. of the Aerospace Conf., vol. 3 (2002)Google Scholar
  27. 27.
    Mood, A.M., Graybill, F.A., Boes, D.C.: Introduction to the Theory of Statistics, 3rd edn. McGraw-Hill, New York (1974)MATHGoogle Scholar
  28. 28.
    Neftci, S.N.: An Introduction to the Mathematics of Financial Derivatives, 2nd edn. Academic Press, London (2000)Google Scholar
  29. 29.
    Thode, H.C.: Testing for Normality. Marcel Dekker, Inc., New York (2002)MATHCrossRefGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
    Zhu, S., Wang, W., Ravishankar, C.V.: Stochastically Consistent Caching and Dynamic Duty Cycling for Erratic Sensor Sources, Technical Report, Univ. of California, Riverside (2005),
  33. 33.
    The Network Simulator ns-2,
  34. 34.
    Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11 Standard, Edition (1997)Google Scholar
  35. 35.
    Rappaport, T.S.: Wireless Communications, Principles and Practice. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  36. 36.
    Perkins, C.E., Royer, E.M.: Ad hoc on-demand distance vector routing. In: Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA (1999) (label LP:0)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shanzhong Zhu
    • 1
  • Wei Wang
    • 1
  • Chinya V. Ravishankar
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations