Optimal Placement and Selection of Camera Network Nodes for Target Localization

  • Ali O. Ercan
  • Danny B. Yang
  • Abbas El Gamal
  • Leonidas J. Guibas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4026)


The paper studies the optimal placement of multiple cameras and the selection of the best subset of cameras for single target localization in the framework of sensor networks. The cameras are assumed to be aimed horizontally around a room. To conserve both computation and communication energy, each camera reduces its image to a binary “scan-line” by performing simple background subtraction followed by vertical summing and thresholding, and communicates only the center of the detected foreground object. Assuming noisy camera measurements and an object prior, the minimum mean squared error of the best linear estimate of the object location in 2-D is used as a metric for placement and selection. The placement problem is shown to be equivalent to a classical inverse kinematics robotics problem, which can be solved efficiently using gradient descent techniques. The selection problem on the other hand is a combinatorial optimization problem and finding the optimal solution can be too costly to implement in an energy-constrained wireless camera network. A semi-definite programming approximation for the problem is shown to achieve close to optimal solutions with much lower computational burden. Simulation and experimental results are presented.


Sensor Node Mean Square Error Wireless Sensor Network Cluster Head Object Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pottie, G.J., Kaiser, W.J., Clare, L., Marcy, H.: Wireless integrated network sensors. Communications of the ACM 43(5), 51–58 (2000)CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A survey. Computer Networks 38, 393–422 (2002)CrossRefGoogle Scholar
  3. 3.
    Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sensor networks for habitat monitoring. In: Proceedings of First International Workshop on Sensor Networks and Applications (2002)Google Scholar
  4. 4.
    Yazawa, Y., Oonishi, T., Watanabe, K., Nemoto, R., Kamahori, M., Hasebe, T., Akamatsu, Y.: A wireless biosensing chip for DNA detection. In: Proceedings of ISSCC 2005 (2005)Google Scholar
  5. 5.
    Yang, D.B.R., Shin, J.-W., Ercan, A.O., Guibas, L.J.: Sensor tasking for occupancy reasoning in a network of cameras. In: Proceedings of BASENETS 2004 (2004)Google Scholar
  6. 6.
    Chen, X., Davis, J.: Camera placement considering occlusion for robust motion capture. Stanford University Computer Science Technical Report, CS-TR-2000-07 (2000)Google Scholar
  7. 7.
    Olague, G., Mohr, R.: Optimal camera placement for accurate reconstruction. Pattern Recognition 35(4), 927–944 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Wu, J., Sharma, R., Huang, T.: Analysis of uncertainty bounds due to quantization for three-dimensional position estimation using multiple cameras. Optical Engineering 37, 280–292 (1998)CrossRefGoogle Scholar
  9. 9.
    Zhang, H.: Two-dimensional optimal sensor placement. IEEE Transactions on Systems, Man, and Cybernetics 25 (1995)Google Scholar
  10. 10.
    Chu, M., Haussecker, H., Zhao, F.: Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks. The International Journal of High Performance Computing Applications 16, 293–313 (2002)CrossRefGoogle Scholar
  11. 11.
    Ertin, E., Fisher III, J.W., Potter, L.C.: Maximum mutual information principle for dynamic sensor query problems. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 405–416. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Wang, H., Yao, K., Pottie, G., Estrin, D.: Entropy-based sensor selection heuristic for localization. In: Proceedings of IPSN 2004 (2004)Google Scholar
  13. 13.
    Vazquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Proceedings of the Vision Modeling and Visualization 2001 (2001)Google Scholar
  14. 14.
    Wong, L.M., Dumont, C., Abidi, M.: Next best view system in a 3D object modeling task. In: Proceedings of Computational Intelligence in Robotics and Automation (1999)Google Scholar
  15. 15.
    Roberts, D.R., Marshall, A.D.: Viewpoint selection for complete surface coverage of three dimensional objects. In: Proceedings of the British Machine Vision Conference (1998)Google Scholar
  16. 16.
    Welman, C.: Inverse kinematics and geometric constraints for articulated figuremanipulation. Master’s Thesis, Simon Fraser University (1993)Google Scholar
  17. 17.
    Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0,1)-quadratic programming. Journal of Global Optimization 7, 51–73 (1995)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Goldenberg, A.A., Benhabib, B., Fenton, R.G.: A complete generalized solution to the inverse kinematics of robots. IEEE Journal of Robotics and Automation RA-1, 14–20 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ali O. Ercan
    • 1
  • Danny B. Yang
    • 2
  • Abbas El Gamal
    • 1
  • Leonidas J. Guibas
    • 2
  1. 1.Dept. of Electrical EngineeringStanford UniversityStanfordUSA
  2. 2.Dept. of Computer ScienceStanford UniversityStanfordUSA

Personalised recommendations