Locating Compromised Sensor Nodes Through Incremental Hashing Authentication

  • Youtao Zhang
  • Jun Yang
  • Lingling Jin
  • Weijia Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4026)


While sensor networks have recently emerged as a promising computing model, they are vulnerable to various node compromising attacks. In this paper, we propose COOL, a COmpromised nOde Locating protocol for detecting and locating compromised nodes once they misbehave in the sensor network. We exploit a proven collision-resilient incremental hashing algorithm and design secure steps to confidently locate compromised nodes. The scheme can also be combined with existing en-route false report filtering schemes to achieve both early false report dropping and accurate compromised nodes isolation.


Sensor Network Sensor Node Cluster Head Relay Node Malicious Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellare, M., Micciancio, D.: A New Paradigm for Collision-Free Hashing: Incrementality at Reduced Cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: a Scalable and Robust Communication in Wireless Sensor Networks. In: 5th IEEE/ACM Mobicom, pp. 174–185 (1999)Google Scholar
  3. 3.
    Chan, H., Perrig, A., Song, D.: Random Key Predistribution Schemes for Sensor Networks. In: IEEE Symposium on Security and Privacy (2003)Google Scholar
  4. 4.
    Chew, P., Marzullo, K.: Masking Failures of Multidimensional Sensors. In: Proc. of the 10th Symposium on Reliable Distributed Systems, pp. 32–41 (1991)Google Scholar
  5. 5.
    Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor Networks. In: Proc. of the 9th ACM Conference on Computer and Communication Security, pp. 41–47 (November 2002)Google Scholar
  6. 6.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on Wireless Communications 1(4), 660–670 (2002)CrossRefGoogle Scholar
  7. 7.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Architecture Directions for Networked Sensors. In: ASPLOS IX (2000)Google Scholar
  8. 8.
    Jaikaeo, C., Srisathapornphat, C., Shen, C.: Diagnosis of Sensor Networks. In: IEEE international Conference on Communications (June 2001)Google Scholar
  9. 9.
    Karlof, C., Wagner, D.: Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures. In: IEEE international workshop on Sensor Network Protocols and Applications, pp. 113–127 (2003)Google Scholar
  10. 10.
    Liu, D., Ning, P.: Establishing Pairwise Keys in Distributed Sensor Networks. In: Proc. ACM CCS (2003)Google Scholar
  11. 11.
    Marzullo, K.: Tolerating Failures of Continuous-valued Sensors. ACM Transactions on Computer Systems (November 1990)Google Scholar
  12. 12.
    Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating Routing Misbehavior in Mobile Ad Hoc Networks. In: MOBICOM (2000)Google Scholar
  13. 13.
    Perrig, A., Szewczyk, R., Wen, V., Culler, D.E., Tygar, J.D.: SPINS: security protocols for sensor networks. In: Proc. of Seventh Annual International Conference on Mobile Computing and Networks (2001)Google Scholar
  14. 14.
    Schneier, B.: Applied Cryptography, 2nd edn. John Wiley, Chichester (1996)Google Scholar
  15. 15.
    Wang, G., Zhang, W., Cao, G., Porta, T.L.: On Supporting Distributed Collaboration in Sensor Networks. In: IEEE MILCOM (2003)Google Scholar
  16. 16.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for Some Hash Functions MD4, MD5, HAVAL-128, RIPEMD. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Ye, F., Luo, H., Lu, S., Zhang, L.: Statistical En-route Detection and Filtering of Injected False Data in Sensor Networks. In: IEEE INFOCOM 2004 (2004)Google Scholar
  19. 19.
    Younis, O., Fahmy, S.: Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid, Energy-Efficient Approach. In: INFOCOM (2004)Google Scholar
  20. 20.
    Zhang, Y., Yang, J., Jin, L., Li, W.: Locating Compromised Sensor Nodes through Incremental Hashing Authentication. Technical Report, University of Pittsburgh (2006)Google Scholar
  21. 21.
    Zhang, W., Cao, G.: Group Rekeying for Filtering False Data in Sensor Networks: A Predistribution and Local Collaboration-Based Approach. In: INFOCOM (2005)Google Scholar
  22. 22.
    Zhu, S., Setia, S., Jajodia, S., Ning, P.: An Interleaved Hop-by-Hop Authentication Scheme for Filtering of Injected False Data in Sensor Networks. In: Proceedings of IEEE Symposium on Security and Privacy, Oakland, California (May 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Youtao Zhang
    • 1
  • Jun Yang
    • 2
  • Lingling Jin
    • 2
  • Weijia Li
    • 1
  1. 1.Computer Science DepartmentUniversity of PittsburghPittsburghUSA
  2. 2.Computer Science and Engineering DepartmentUniversity of California at RiversideRiversideUSA

Personalised recommendations