Advertisement

A Rule Language for Modelling and Monitoring Social Expectations in Multi-agent Systems

  • Stephen Cranefield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3913)

Abstract

This paper proposes a rule language for defining social expectations based on a metric interval temporal logic with past and future modalities and a current-time binding operator. An algorithm for run-time monitoring compliance of rules in this language based on formula progression is also presented.

Keywords

Model Check Multiagent System Autonomous Agent Atomic Formula Interval Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cortés, U.: Electronic institutions and agents. AgentLink News 15, 14–15 (2004)Google Scholar
  2. 2.
    Leite, J., Omicini, A., Torroni, P., Yolum, p. (eds.): DALT 2004. LNCS, vol. 3476. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Huget, M.P., Esteva, M., Phelps, S., Sierra, C., Wooldridge, M.: Model checking electronic institutions. In: Proceedings of the Workshop on Model Checking and Artificial Intelligence (MoChArt-2002), 15th European Conference on Artificial Intelligence (2002)Google Scholar
  4. 4.
    Cliffe, O., Padget, J.: A framework for checking agent interaction within institutions. In: Proceedings of the Workshop on Model Checking and Artificial Intelligence (MoChArt-2002), 15th European Conference on Artificial Intelligence (2002)Google Scholar
  5. 5.
    Verdicchio, M., Colombetti, M.: A logical model of social commitment for agent communication. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2003), pp. 528–535. ACM Press, New York (2003)CrossRefGoogle Scholar
  6. 6.
    Verdicchio, M., Colombetti, M.: A commitment-based communicative act library. In: Proceedings of the 4nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), pp. 755–761. ACM Press, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the ACM 43, 116–146 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  9. 9.
    Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for planning. Artificial Intelligence 116, 123–191 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Verdicchio, M., Colombetti, M.: Dealing with time in content language expressions. In: Proceedings of the Workshop on Agent Communication, Third International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 90–104 (2004)Google Scholar
  11. 11.
    Haslum, P.: Partial state progression: An extension to the Bacchus-Kabanza algorithm, with applications to prediction and MITL consistency. In: Proceedings of the Workshop on Planning via Model-Checking, Sixth International Conference on AI Planning and Scheduling, pp. 64–71 (2002)Google Scholar
  12. 12.
    Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Annals of Mathematics and Artificial Intelligence 22, 5–27 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance verification of agent interaction: a logic-based software tool. In: Trappl, R. (ed.) Cybernetics and Systems 2004, vol. II, pp. 570–575. Austrian Society for Cybernetics Studies (2004)Google Scholar
  14. 14.
    Mallya, A.U., Yolum, P., Singh, M.P.: Resolving commitments among autonomous agents. In: Dignum, F.P.M. (ed.) ACL 2003. LNCS, vol. 2922, pp. 166–182. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for tracking the normative state of contracts. International Journal of Cooperative Information Systems 14, 99–129 (2005)CrossRefGoogle Scholar
  16. 16.
    García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.A.: Implementing norms in electronic institutions. In: Proceedings of the 4nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), pp. 667–673. ACM Press, New York (2005)CrossRefGoogle Scholar
  17. 17.
    García-Camino, A., Rodríguez-Aguilar, J.-A., Sierra, C., Vasconcelos, W.: A distributed architecture for norm-aware agent societies. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS, vol. 3904, pp. 89–105. Springer, Heidelberg (2006), http://www.doc.ic.ac.uk/~ue/DALT-2005/papers/24.pdf.
  18. 18.
    Endriss, U.: Temporal logics for representing agent communication protocols. In: Proceedings of the Workshop on Agent Communication, 4th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 33–47 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stephen Cranefield
    • 1
  1. 1.Department of Information ScienceUniversity of OtagoDunedinNew Zealand

Personalised recommendations