A Coordination Framework Based on the Sociology of Organized Action

  • C. Sibertin-Blanc
  • F. Amblard
  • M. Mailliard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3913)


This paper proposes a basis to design coordination models in multi-agent systems. This proposal is based on the exploitation of an in-depth exploration of a well-experienced sociological theory, the Sociology of Organized Action, also called Strategic Analysis. This theory intends to discover the functioning of any organization beyond its formal rules, especially how social actors build the organization that in return rules their behaviors, and which are the mechanisms they use to regulate their interactions. We first present the concepts developed by this theory to reveal the strategic aspects of the actors’ behaviors in an organized actions framework. Then we introduce a meta-model that allows us to describe the structure of Concrete Action Systems and how social actors handle its elements. A classical case study is used to illustrate the approach.


Organize Action Sociological Theory Coordination Model Learn Classifier System Exchange Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferber, J., Gutknecht, O.: A Meta-Model for the Analysis and Design of Organizations in Multi-Agent Systems. In: Proceedings of the 3rd International Conference on Multi-Agents Systems (ICMAS), IEEE CS Press, Los Alamitos (1998)Google Scholar
  2. 2.
    Cohen, P.R., Levesque, H.J.: Intention is Choice with Commitment. Artificial Intelligence 42, 213–261 (1990)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM Computing Survey 26, 1 (1994)CrossRefGoogle Scholar
  4. 4.
    Castelfranchi, C.: Modeling social action for AI Agents. Artificial Intelligence 103, 157–182 (1998)MATHCrossRefGoogle Scholar
  5. 5.
    Hermann, T., Jahnke, I., Loser, K.-U.: The Role Concept as a Basis for Designing Community Systems. In: Zacklad, M., et al. (eds.) Cooperative Systems Design, IOS Press, Amsterdam (2004)Google Scholar
  6. 6.
    Crozier, M., Friedberg, E.: L’acteur et le système: les contraintes de l’action collective. Edition du Seuil, Paris (1977)Google Scholar
  7. 7.
    Crozier, M., Friedberg, E.: Organizations and Collective Action: our Contribution to Organizational Analysis. In: Bacharrach, S.B., Gagliardi, P., Mundel, B. (eds.) Studies of Organiszations in the European Tradition. Research in the Sociology of Organizations, vol. 13, pp. 71–93. Greenwich Corn. jay-Press (1995)Google Scholar
  8. 8.
    Granovetter, M.: Threshold models of collective behavior. American Journal of Sociology 83, 1360–1380 (1978)Google Scholar
  9. 9.
    Bernoux, P.: La sociologie des organisations. Edition du Seuil, Paris (1985)Google Scholar
  10. 10.
    Simon, H.: The sciences of the artificial, 3rd edn. MIT Press, Cambridge (1996)Google Scholar
  11. 11.
    Crozier, M.: The Bureaucratic Phenomenon. University of Chicago Press, Le phénomène bureaucratique, Edition du Seuil, Paris (1964)Google Scholar
  12. 12.
    Mailliard, M., Audras, S., Casula, M.: Multi Agents Systems based on Classifiers for the Simulation of Concrete Action Systems. In: Proceedings of the 1st EUropean Workshop on Multi-Agent Systems (EUMAS), Oxford University, Oxford (2003)Google Scholar
  13. 13.
    Holland, J.H., Booker, L.B., Colombetti, M., Dorigo, M., Goldberg, D.E., Forrest, S., Riolo, R.L., Smith, R.E., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: What is a learning classifier system? In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS, vol. 1813, pp. 3–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Sichman, J., Conte, R., Demazeau, Y., Castelfranchi, C.: Reasonning about others using dependence networks. In: Proc. of the 3rd italian Workshop on Distributed Artificial Intelligence, Rome (1993)Google Scholar
  15. 15.
    Smets, P.: The Travel-Tours Agency,
  16. 16.
    Slowinski, R., Teghem, J.: Optimization models using fuzzy sets and possibility theory. Theory and decision library. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  17. 17.
    Gilbert, N., Troitzsch, K.: Simulation for the social scientist. Open University Press, Londres (1999)Google Scholar
  18. 18.
    Sibertin-Blanc, C.: Pour une formalisation de la Sociologie de l’Action Organisée. Communication au XVIIème congrès de l’Association International des Sociologues de Langue Française, 5-9 juillet, Tours (F) (2004)Google Scholar
  19. 19.
    Clegg, S.R., Hardy, C., Nord, W.R.: Handbook of organization studies. Sage, Thousand Oaks (1996)Google Scholar
  20. 20.
    Michael Köhler, M., Langer, R., Moldt, D., Rölke, H.: Combining the Sociological Theory Bourdieu’s with Multi Agent Systems. Sozionikaktuell, vol. 1, University Hamburg (2001),
  21. 21.
    Köhler, M., Martens, M., Rölke, H.: Modelling Social Behaviour with Petri net based Multi-Agent Systems. Sozionikaktuell 4, Univ. Hamburg, (2003),
  22. 22.
    Wooldridge, M.: An Introduction to MutiAgent Systems. Wiley, Chichester (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • C. Sibertin-Blanc
    • 1
  • F. Amblard
    • 1
  • M. Mailliard
    • 1
  1. 1.IRIT – Université de Toulouse 1Toulouse CedexFrance

Personalised recommendations