Advertisement

Atomic Routing Games on Maximum Congestion

  • Costas Busch
  • Malik Magdon-Ismail
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4041)

Abstract

We study atomic routing games on networks in which players choose a path with the objective of minimizing the maximum congestion along the edges of their path. The social cost is the global maximum congestion over all edges in the network. We show that the price of stability is 1. The price of anarchy, PoA, is determined by topological properties of the network. In particular, PoA = O(ℓ+ logn), where ℓ is the length of the longest path in the player strategy sets, and n is the size of the network. Further, κ– 1 ≤PoAc (κ 2 + log2 n), where κ is the length of the longest cycle in the network, and c is a constant.

Keywords

Nash Equilibrium Social Cost Pure Strategy Network Congestion Congestion Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proc. FOCS (2004)Google Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near optimal network design with selfish agents. In: Proc. STOC (2003)Google Scholar
  3. 3.
    Berenbrink, P., Scheideler, C.: Locally efficient on-line strategies for routing packets along fixed paths. In: 10th ACM-SIAM Symposium on Discrete ALgorithms (SODA), pp. 112–121 (1999)Google Scholar
  4. 4.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proc. STOC (2005)Google Scholar
  5. 5.
    Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Computational complexity, fairness, and the price of anarchy of the maximum latency problem. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 59–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Cypher, R., Meyer auf der Heide, F., Scheideler, C., Vöcking, B.: Universal algorithms for store-and-forward and wormhole routing. In: In Proc. of the 28th ACM Symp. on Theory of Computing, pp. 356–365 (1996)Google Scholar
  7. 7.
    Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for server farms. In: Proc. STOC (2002)Google Scholar
  8. 8.
    Czumaj, A., Vöcking, B.: Tight Bounds for Worst-Case Equilibria. In: Proc. SODA (2002)Google Scholar
  9. 9.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of Nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 123. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 593–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Garing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing nash equilibria for scheduling on restricted parallel links. In: Proc. STOC (2004)Google Scholar
  12. 12.
    Garing, M., Lücking, T., Mavronicolas, M., Monien, B.: The price of anarchy for polynomial social cost. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 574–585. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Garing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash equilibria in discrete routing games with convex latency functions. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 645–657. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball fusion. In: Proc. SIROCCO (2002)Google Scholar
  15. 15.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, p. 404. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays - Trees - Hypercubes. Morgan Kaufmann, San Mateo (1992)MATHGoogle Scholar
  17. 17.
    Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-scheduling in O(congestion+dilation) steps. Combinatorica 14, 167–186 (1994)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Leighton, T., Maggs, B., Richa, A.W.: Fast algorithms for finding O(congestion + dilation) packet routing schedules. Combinatorica 19, 375–401 (1999)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Telecomunication Systems 17(4), 385–409 (2001)MATHCrossRefGoogle Scholar
  20. 20.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–558. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Mavronicolas, M., Spirakis, P.: The price of selfish routing. In: Proc. STOC (2001)Google Scholar
  22. 22.
    Monderer, D., Shapely, L.S.: Potential games. Games and Economic Behavior (1996)Google Scholar
  23. 23.
    Ostrovsky, R., Rabani, Y.: Universal O(congestion+dilation+log1 + ε N) local control packet switching algorithms. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, New York, pp. 644–653 (May 1997)Google Scholar
  24. 24.
    Papadimitriou, C.H.: Algorithms, games and the internet. In: Proc. STOC, pp. 749–753 (2001)Google Scholar
  25. 25.
    Rabani, Y., Tardos, É.: Distributed packet switching in arbitrary networks. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, May 22–24, pp. 366–375 (1996)Google Scholar
  26. 26.
    Rosenthal, R.W.: A class of games possesing pure-strategy Nash equilibria. International Journal of Game Theory (1973)Google Scholar
  27. 27.
    Roughgarden, T.: The maximum latency of selfish routing. In: Proc. SODA (2004)Google Scholar
  28. 28.
    Roughgarden, T.: Selfish routing with atomic players. In: Proc. SODA (2005)Google Scholar
  29. 29.
    Roughgarden, T., Tardos, É.: How bad is selfish routing. Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Roughgarden, T., Tardos, É.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games and Economic Behavior 47(2), 389–403 (2004)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Suri, S., Tóth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games. In: Proc. SPAA (2004)Google Scholar
  32. 32.
    West, D.B.: Introduction to Graph Theory. Prentice-Hall, Upper Saddle River (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Costas Busch
    • 1
  • Malik Magdon-Ismail
    • 1
  1. 1.Dept. of Computer ScienceRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations