Advertisement

Linear Programming Polytope and Algorithm for Mean Payoff Games

  • Ola Svensson
  • Sergei Vorobyov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4041)

Abstract

We investigate LP-polytopes generated by mean payoff games and their properties, including the existence of tight feasible solutions of bounded size. We suggest a new associated algorithm solving a linear program and transforming its solution into a solution of the game.

Keywords

Linear Complementarity Problem Outgoing Edge Winning Strategy Positional Strategy Game Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Björklund, H., Nilsson, O., Svensson, O., Vorobyov, S.: Controlled linear programming: Boundedness and duality. Technical Report DIMACS-2004-56, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ (December 2004), http://dimacs.rutgers.edu/TechnicalReports/
  2. 2.
    Björklund, H., Nilsson, O., Svensson, O., Vorobyov, S.: The controlled linear programming problem. Technical Report DIMACS-2004-41, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ (September 2004)Google Scholar
  3. 3.
    Björklund, H., Svensson, O., Vorobyov, S.: Controlled linear programming for infinite games. Technical Report DIMACS-2005-13, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ (April 2005)Google Scholar
  4. 4.
    Björklund, H., Svensson, O., Vorobyov, S.: Linear complementarity algorithms for mean payoff games. Technical Report DIMACS-2005-05, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ (February 2005)Google Scholar
  5. 5.
    Björklund, H., Vorobyov, S.: Combinatorial structure and randomized subexponential algorithms for infinite games. Theoretical Computer Science 349(3), 347–360 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Applied Mathematics (accepted, 2006); Preliminary version in: MFCS 2004. LNCS, vol. 3153, pp. 673–685. Springer, Heidelberg (to appear, 2004) DIMACS TR 2004-05Google Scholar
  7. 7.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, London (1992)MATHGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International Journ. of Game Theory 8, 109–113 (1979)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gurvich, V.A., Karzanov, A.V., Khachiyan, L.G.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. U.S.S.R. Computational Mathematics and Mathematical Physics 28(5), 85–91 (1988)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Murty, K.G., Yu, F.-T.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin (1988)MATHGoogle Scholar
  11. 11.
    Pisaruk, N.: Mean cost cyclical games. Mathematics of Operations Research 24(4), 817–828 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, Chichester (1986)MATHGoogle Scholar
  13. 13.
    Schrijver, A.: Combinatorial Optimization, vol. 1-3. Springer, Heidelberg (2003)MATHGoogle Scholar
  14. 14.
    Svensson, O., Vorobyov, S.: A subexponential algorithm for a subclass of P-matrix generalized linear complementarity problems. Technical Report DIMACS-2005-20, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, NJ (June 2005)Google Scholar
  15. 15.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158, 343–359 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ola Svensson
    • 1
  • Sergei Vorobyov
    • 2
  1. 1.IDSIA, Istituto Dalle Molle di Studi sull’Intelligenza ArtificialeLuganoSwitzerland
  2. 2.Information Technology DepartmentUppsala UniversitySweden

Personalised recommendations