Advertisement

A Compression-Boosting Transform for Two-Dimensional Data

  • Qiaofeng Yang
  • Stefano Lonardi
  • Avraham Melkman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4041)

Abstract

We introduce a novel invertible transform for two- dimensional data which has the objective of reordering the matrix so it will improve its (lossless) compression at later stages. The transform requires to solve a computationally hard problem for which a randomized algorithm is used. The inverse transform is fast and can be implemented in linear time in the size of the matrix. Preliminary experimental results show that the reordering improves the compressibility of digital images.

Keywords

Original Matrix Column Index Image Bird Recursive Decomposition Constant Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lonardi, S., Szpankowski, W., Yang, Q.: Finding biclusters by random projections. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 74–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Storer, J.A., Helfgott, H.: Lossless image compression by block matching. Comput. J. 40(2/3), 137–145 (1997)CrossRefGoogle Scholar
  3. 3.
    Buchsbaum, A.L., Caldwell, D.F., Church, K.W., Fowler, G.S., Muthukrishnan, S.: Engineering the compression of massive tables: an experimental approach. In: Proceedings of the ACM-SIAM Annual Symposium on Discrete Algorithms, San Francisco, CA, pp. 213–222 (2000)Google Scholar
  4. 4.
    Buchsbaum, A.L., Fowler, G.S., Giancarlo, R.: Improving table compression with combinatorial optimization. In: Proceedings of the ACM-SIAM Annual Symposium on Discrete Algorithms, San Francisco, CA, pp. 175–184 (2002)Google Scholar
  5. 5.
    Vo, B.D., Vo, K.P.: Using column dependency to compress tables. In: Storer, J.A., Cohn, M. (eds.) Data Compression Conference, Snowbird, Utah, pp. 92–101. IEEE Computer Society Press, TCC (2004)Google Scholar
  6. 6.
    Galli, N., Seybold, B., Simon, K.: Compression of sparse matrices: Achieving almost minimal table sizes. In: Proceedings of Conference on Algorithms and Experiments (ALEX 1998), Trento, Italy, pp. 27–33 (1998)Google Scholar
  7. 7.
    Bell, T., McKenzie, B.: Compression of sparse matrices by arithmetic coding. In: Storer, J.A., Cohn, M. (eds.) Data Compression Conference, Snowbird, Utah, pp. 23–32. IEEE Computer Society Press, TCC (1998)Google Scholar
  8. 8.
    McKenzie, B., Bell, T.: Compression of sparse matrices by blocked Rice coding. IEEE Trans. Inf. Theory 47, 1223–1230 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Johnson, D.S., Krishnan, S., Chhugani, J., Kumar, S., Venkatasubramanian, S.: Compressing large boolean matrices using reordering techniques. In: Proceedings of International Conference on Very Large Data Bases (VLDB 2004), Toronto, Canada (to appear, 2004)Google Scholar
  10. 10.
    Chakrabarti, D., Papadimitriou, S., Modha, D., Faloutsos, C.: Fully automatic cross-assocations. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2004), pp. 89–98. ACM Press, New York (2004)Google Scholar
  11. 11.
    Peeters, R.: The maximum-edge biclique problem is NP-complete. Technical Report 789, Tilberg University: Faculty of Economics and Business Adminstration (2000)Google Scholar
  12. 12.
    Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and multipartite clique problems. Journal of Algorithms 41, 388–403 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hochbaum, D.S.: Approximating clique and biclique problems. Journal of Algorithms 29(1), 174–200 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qiaofeng Yang
    • 1
  • Stefano Lonardi
    • 1
  • Avraham Melkman
    • 2
  1. 1.Dept. of Computer Science & EngineeringUniversity of CaliforniaRiverside
  2. 2.Department of Computer ScienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations