Grayscale Watersheds on Perfect Fusion Graphs

  • Jean Cousty
  • Michel Couprie
  • Laurent Najman
  • Gilles Bertrand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4040)


In this paper, we study topological watersheds on perfect fusion graphs, an ideal framework for region merging. An important result is that contrarily to the general case, in this framework, any topological watershed is thin.

Then we investigate a new image transformation called C-watershed and we show that, on perfect fusion graphs, the segmentations obtained by C-watershed correspond to segmentations obtained by topological watersheds. Compared to topological watershed, a major advantage of this transformation is that, on perfect fusion graph, it can be computed thanks to a simple linear-time immersion-like algorithm. Finally, we derive characterizations of perfect fusion graphs based on thinness properties of both topological watersheds and C-watersheds.


Line Graph Priority Queue Black Point Mathematical Morphology Black Vertex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pavlidis, T.: Structural Pattern Recognition. Springer Series in Electrophysics, vol. 1, pp. 90–123. Springer, Heidelberg (1977); Segmentation techniques, chapter 4–5MATHGoogle Scholar
  2. 2.
    Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. PAMI 13(6), 583–598 (1991)Google Scholar
  3. 3.
    Meyer, F.: Un algorithme optimal de ligne de partage des eaux. In: Actes du 8ème Congrès AFCET, Lyon-Villeurbanne, France, pp. 847–859 (1991)Google Scholar
  4. 4.
    Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 443–481. Marcel Decker (1993)Google Scholar
  5. 5.
    Couprie, M., Bertrand, G.: Topological grayscale watershed transform. In: SPIE Vision Geometry V Proceedings, vol. 3168, pp. 136–146 (1997)Google Scholar
  6. 6.
    Jasiobedzki, P., Taylor, C., Brunt, J.: Automated analysis of retinal images. IVC 1(3), 139–144 (1993)Google Scholar
  7. 7.
    Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Fusion graphs: merging properties and watershed (submitted, 2006); Also in technical report IGM2005-04,
  8. 8.
    Bertrand, G.: On topological watersheds. JMIV 22(2-3), 217–230 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. JMIV 22(2-3), 231–249 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Najman, L., Couprie, M., Bertrand, G.: Watersheds, mosaics and the emergence paradigm. DAM 147(2-3), 301–324 (2005) (Special issue on DGCI)MATHMathSciNetGoogle Scholar
  11. 11.
    Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: Mathematical Morphology and its Applications to Image Processing, pp. 69–76 (1994)Google Scholar
  12. 12.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. PAMI 18(12), 1163–1173 (1996)Google Scholar
  13. 13.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. on Image Processing (to appear, 2006)Google Scholar
  14. 14.
    Bertrand, G.: A new definition for the dynamics. In: 7th International Symposium on Mathematical Morphology Proceedings, pp. 197–206 (2005)Google Scholar
  15. 15.
    Rosenfeld, A.: The fuzzy geometry of image subsets. Pattern Recognition Letters 2, 311–317 (1984)CrossRefGoogle Scholar
  16. 16.
    Thorup, M.: On ram priority queues. In: 7th ACM-SIAM Symposium on Discrete Algorithms, pp. 59–67 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean Cousty
    • 1
  • Michel Couprie
    • 1
  • Laurent Najman
    • 1
  • Gilles Bertrand
    • 1
  1. 1.Institut Gaspard-Monge, Laboratoire A2SIGroupe ESIEE, Cité DescartesNoisy-le-GrandFrance

Personalised recommendations