Advertisement

Additive Subsets

  • Yan Gerard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4040)

Abstract

Additive subsets have been introduced in the framework of discrete tomography with the underlying notion of x-rays. This notion can be defined from two different ways. We provide in the paper extensions of the two definitions and a proof of their equivalence in a framework where x-rays are replaced by any subsets. It results a pair of dual definitions of additivity cleared out from dispensable assumptions and a proof of their equivalence reduced to a separation theorem.

Keywords

Convex Hull Convex Cone Normal Linear Space Separation Theorem Polyhedral Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Gale, D.: A theorem on flows in networks. Pacific J. Math. 7, 1073–1082 (1957)MATHMathSciNetGoogle Scholar
  3. 3.
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Computing 5, 691–703 (1976)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Herman, G.T., Kuba, A.: Discrete Tomography: A Historical Overview. In: Discrete Tomography, Foundations, Algorithms, and Applications, ch. 1 pp. 3–34 (1999)Google Scholar
  5. 5.
    Gardner, R.J.: Geometric Tomography. Encyclopedia of Mathematics and its Applications, vol. 58. Cambridge University Press, Cambridge (1995)Google Scholar
  6. 6.
    Frosini, A., Nivat, M.: Binary Matrices Under the Microscope: A Tomographical Problem. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 35–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Gardner, R., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Math. 202, 45–71 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brunetti, S., Daurat, A.: Stability in Discrete Tomography: Linear Programming, Additivity and Convexity. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 398–407. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Brunetti, S., Daurat, A.: Stability in Discrete Tomography: some positive results. Discrete Applied Mathematics 147, 207–226 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Onn, S., Vallejo, E.: Permutohedra and minimal matrices. Linear Algebra and its Applications 412, 471–489 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Vallejo, E.: Minimal matrices and discrete tomography. Electronic Notes in Discrete Mathematics 20, 113–132 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fishburn, P.C., Lagarias, J.C., Reeds, J.A., Shepp, L.A.: Sets uniquely determined by projections on axes II. Discrete case. Discrete Mathematics 91, 149–159 (1991)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fishburn, P.C., Shepp, L.: Sets of Uniqueness and Additivity in Integer Lattices. In: Discrete Tomography, Foundations, Algorithms, and Applications, ch. 2, pp. 3–34 (1999)Google Scholar
  14. 14.
    Ziegler, G.: Lectures on polytopes. Graduate Texts in Mathematics. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28 (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yan Gerard
    • 1
  1. 1.LLAICAuvergne UniversityAubièreFrance

Personalised recommendations