Advertisement

A Comparison of Shape Matching Methods for Contour Based Pose Estimation

  • Bodo Rosenhahn
  • Thomas Brox
  • Daniel Cremers
  • Hans-Peter Seidel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4040)

Abstract

In this paper, we analyze two conceptionally different approaches for shape matching: the well-known iterated closest point (ICP) algorithm and variational shape registration via level sets. For the latter, we suggest to use a numerical scheme which was introduced in the context of optic flow estimation. For the comparison, we focus on the application of shape matching in the context of pose estimation of 3-D objects by means of their silhouettes in stereo camera views. It turns out that both methods have their specific shortcomings. With the possibility of the pose estimation framework to combine correspondences from two different methods, we show that such a combination improves the stability and convergence behavior of the pose estimation algorithm.

Keywords

Iterate Close Point Shape Match Point Correspondence Iterate Close Point Algorithm Pose Estimation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergevin, R., Soucy, M., Gagnon, H., Laurendeau, D.: Towards a general multi-view registration technique. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 540–547 (1996)CrossRefGoogle Scholar
  2. 2.
    Besl, P., McKay, N.: A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  4. 4.
    Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, vol. 3, pp. 125–128 (March 1992)Google Scholar
  5. 5.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Brox, T., Rosenhahn, B., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 109–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: The trimmed iterative closest point algorithm. Image and Vision Computing 23(3), 299–309 (2005)CrossRefGoogle Scholar
  8. 8.
    Cremers, D., Soatto, S.: A pseudo distance for shape priors in level set segmentation. In: Faugeras, O., Paragios, N. (eds.) Proc. 2nd IEEE Intl. Workshop on Variational, Geometric and Level Set Methods (VLSM), pp. 169–176 (2003)Google Scholar
  9. 9.
    Cremers, D., Sochen, N., Schnörr, C.: Multiphase dynamic labeling for variational recognition-driven image segmentation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 74–86. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh–Taylor instability. In: Rautman, R. (ed.) Approximation Methods for Navier–Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 145–158. Springer, Berlin (1979)CrossRefGoogle Scholar
  11. 11.
    Feldmar, J., Ayache, N.: Rigid, affine and locally affine registration of free-form surfaces. International Journal of Computer Vision 18, 99–119 (1996)CrossRefGoogle Scholar
  12. 12.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Technical Report TR2004-1963, Computer Science Department, Cornell University (September 2004)Google Scholar
  13. 13.
    Johnson, A.E., Kang, S.B.: Registration and integration of textured 3-D data. In: Proc. International Conference on Recent Advances in 3-D Digital Imaging and Modeling, pp. 234–241. IEEE Computer Society, Los Alamitos (1997)CrossRefGoogle Scholar
  14. 14.
    Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1185–1190 (2000)CrossRefGoogle Scholar
  15. 15.
    Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Hilton Head, SC, June 2000, vol. 1, pp. 316–323 (2000)Google Scholar
  16. 16.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Paragios, N., Rousson, M., Ramesh, V.: Distance transforms for non-rigid registration. Computer Vision and Image Understanding 23, 142–165 (2003)CrossRefGoogle Scholar
  18. 18.
    Pennec, X., Thirion, J.: A framework for uncertainty and validation of 3D registration methods based on points and frames. International Journal of Computer Vision 25(3), 203–229 (1997)CrossRefGoogle Scholar
  19. 19.
    Riklin-Raviv, T., Kiryati, N., Sochen, N.: Unlevel-sets: geometry and prior-based segmentation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 50–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Rosenhahn, B.: Pose Estimation Revisited. PhD thesis, University of Kiel, Germany (September 2003)Google Scholar
  21. 21.
    Rosenhahn, B., Sommer, G.: Pose estimation of free-form objects. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 414–427. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. 3rd Intl. Conf. on 3-D Digital Imaging and Modeling, pp. 224–231 (2001)Google Scholar
  23. 23.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 35, 13–32 (1999)CrossRefGoogle Scholar
  24. 24.
    Veltkamp, R., Hagedoorn, M.: State-of-the-art in shape matching. Technical Report UU-CS-1999-27, Utrecht University (September 1999)Google Scholar
  25. 25.
    Zhang, Z.: Iterative points matching for registration of free form curves and surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bodo Rosenhahn
    • 1
  • Thomas Brox
    • 2
  • Daniel Cremers
    • 2
  • Hans-Peter Seidel
    • 1
  1. 1.MPI for InformaticsSaarbrückenGermany
  2. 2.CVPR GroupUniversity of BonnBonnGermany

Personalised recommendations