Incremental and Transitive Discrete Rotations

  • Bertrand Nouvel
  • Éric Rémila
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4040)


A discrete rotation algorithm can be apprehended as a parametric map f α from \(\mathbb Z[i]\) to \(\mathbb Z[i]\), whose resulting permutation “looks like” the map induced by an Euclidean rotation. For this kind of algorithm, to be incremental means to compute successively all the intermediate rotated copies of an image for angles in-between 0 and a destination angle. The discretized rotation consists in the composition of an Euclidean rotation with a discretization; the aim of this article is to describe an algorithm which computes incrementally a discretized rotation. The suggested method uses only integer arithmetic and does not compute any sine nor any cosine. More precisely, its design relies on the analysis of the discretized rotation as a step function: the precise description of the discontinuities turns to be the key ingredient that makes the resulting procedure optimally fast and exact. A complete description of the incremental rotation process is provided, also this result may be useful in the specification of a consistent set of definitions for discrete geometry.


Generate Pair Rotation Process Integer Arithmetic Gaussian Integer Destination Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers Inc., San Francisco (2004)MATHGoogle Scholar
  2. 2.
    Réveillès, J.P.: Géométrie discrète, calcul en nombres entiers, et algorithmique. Docent (Thèse d’État), Université Louis Pasteur (1991)Google Scholar
  3. 3.
    Andrès, E.: Discrete Circles, and Discrete Rotations. PhD thesis, Université Louis Pasteur (1992)Google Scholar
  4. 4.
    Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: Periodicity and quasiperiodicity properties. Discrete Applied Mathematics 127, 325–343 (2005)CrossRefGoogle Scholar
  5. 5.
    Amir, A., Butman, A., Crochemore, M., Landau, G.M., Schaps, M.: Two-dimensional pattern matching with rotations. Theoretical Computer Sciences 314, 173–187 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Poggiaspalla, G.: Autosimilarité dans les Systèmes Isométriques par Morceaux. PhD thesis, Université d’Aix-Marseille II (Luminy) (2003)Google Scholar
  7. 7.
    Nouvel, B., Rémila, E.: Characterization of bijective discretized rotations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Voss, K.: Discrete Images, Objects and Functions in ℤn. Springer, Berlin (1993)Google Scholar
  9. 9.
    Nouvel, B., Rémila, É.: On colorations induced by discrete rotations. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 174–183. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bertrand Nouvel
    • 1
  • Éric Rémila
    • 1
  1. 1.Laboratoire de l’Informatique du ParallélismeUMR CNRS – ENS Lyon – UCB Lyon – INRIA 5668, École Normale Supérieure de LyonLyonFrance

Personalised recommendations