IWCIA 2006: Combinatorial Image Analysis pp 199-213

# Incremental and Transitive Discrete Rotations

• Bertrand Nouvel
• Éric Rémila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4040)

## Abstract

A discrete rotation algorithm can be apprehended as a parametric map f α from $$\mathbb Z[i]$$ to $$\mathbb Z[i]$$, whose resulting permutation “looks like” the map induced by an Euclidean rotation. For this kind of algorithm, to be incremental means to compute successively all the intermediate rotated copies of an image for angles in-between 0 and a destination angle. The discretized rotation consists in the composition of an Euclidean rotation with a discretization; the aim of this article is to describe an algorithm which computes incrementally a discretized rotation. The suggested method uses only integer arithmetic and does not compute any sine nor any cosine. More precisely, its design relies on the analysis of the discretized rotation as a step function: the precise description of the discontinuities turns to be the key ingredient that makes the resulting procedure optimally fast and exact. A complete description of the incremental rotation process is provided, also this result may be useful in the specification of a consistent set of definitions for discrete geometry.

## Keywords

Generate Pair Rotation Process Integer Arithmetic Gaussian Integer Destination Layer
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers Inc., San Francisco (2004)
2. 2.
Réveillès, J.P.: Géométrie discrète, calcul en nombres entiers, et algorithmique. Docent (Thèse d’État), Université Louis Pasteur (1991)Google Scholar
3. 3.
Andrès, E.: Discrete Circles, and Discrete Rotations. PhD thesis, Université Louis Pasteur (1992)Google Scholar
4. 4.
Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: Periodicity and quasiperiodicity properties. Discrete Applied Mathematics 127, 325–343 (2005)
5. 5.
Amir, A., Butman, A., Crochemore, M., Landau, G.M., Schaps, M.: Two-dimensional pattern matching with rotations. Theoretical Computer Sciences 314, 173–187 (2004)
6. 6.
Poggiaspalla, G.: Autosimilarité dans les Systèmes Isométriques par Morceaux. PhD thesis, Université d’Aix-Marseille II (Luminy) (2003)Google Scholar
7. 7.
Nouvel, B., Rémila, E.: Characterization of bijective discretized rotations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer, Heidelberg (2004)
8. 8.
Voss, K.: Discrete Images, Objects and Functions in ℤn. Springer, Berlin (1993)Google Scholar
9. 9.
Nouvel, B., Rémila, É.: On colorations induced by discrete rotations. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 174–183. Springer, Heidelberg (2003)