Advertisement

A New Sub-pixel Map for Image Analysis

  • Hans Meine
  • Ullrich Köthe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4040)

Abstract

Planar maps have been proposed as a powerful and easy-to-use representation for various kinds of image analysis results, but so far they are restricted to pixel accuracy. This leads to limitations in the representation of complex structures (such as junctions, triangulations, and skeletons) and discards the sub-pixel information available in grayvalue and color images. We extend the planar map formalism to sub-pixel accuracy and introduce various algorithms to create such a map, thereby demonstrating significant gains over the existing approaches.

Keywords

Image Segmentation Label Image Watershed Algorithm Pixel Grid Constrain Delaunay Triangulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braquelaire, A.: Representing and segmenting 2d images by means of planar maps with discrete embeddings: From model to applications. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 92–121. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Meine, H., Köthe, U.: The GeoMap: A unified representation for topology and geometry. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 132–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Brun, L., Kropatsch, W.: Construction of combinatorial pyramids. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Mäntylä, M.: An Introduction to Solid Modeling. Computer Science Press (1988)Google Scholar
  5. 5.
    Brun, L., Domenger, J.P., Braquelaire, J.P.: Discrete maps: a framework for region segmentation algorithms. In: Graph-based Representations in Pattern Recognition, pp. 83–92. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Meine, H.: XPMap-based irregular pyramids for image segmentation. Diploma thesis, Dept. of CS, University of Hamburg (2003)Google Scholar
  7. 7.
    Pavlidis, T.: Structural Pattern Recognition. Springer, Heidelberg (1977)MATHGoogle Scholar
  8. 8.
    Brun, L., Domenger, J.P.: Incremental modifications of segmented images. Technical Report RR112696, Université Bordeaux, LABRI (1996)Google Scholar
  9. 9.
    Brun, L., Domenger, J.P.: A new split and merge algorithm with topological maps and inter-pixel boundaries. In: Proc. WSCG 1997 (1997)Google Scholar
  10. 10.
    Köthe, U.: XPMaps and topological segmentation - a unified approach to finite topologies in the plane. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 22–33. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Kropatsch, W.G.: Building irregulars pyramids by dual graph contraction. IEEE-Proc. Vision, Image and Signal Processing 142, 366–374 (1995)CrossRefGoogle Scholar
  12. 12.
    Canny, J.: A computational approach to edge detection. T-PAMI 8, 679–698 (1986)Google Scholar
  13. 13.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics, and Image Processing 42, 141–161 (1989)CrossRefGoogle Scholar
  14. 14.
    Köthe, U.: Deriving topological representations from edge images. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 320–334. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Braquelaire, J.P., Brun, L.: Image segmentation with topological maps and interpixel representation. J. Visual Comm. and Image Representation 9, 62–79 (1998)CrossRefGoogle Scholar
  16. 16.
    Meine, H., Köthe, U.: Image segmentation with the exact watershed transform. In: Villanueva, J. (ed.) Proc. VIIP 2005, pp. 400–405. ACTA Press (2005)Google Scholar
  17. 17.
    Unser, M., Aldroubi, A., Eden, M.: B-Spline signal processing: Part I and II. IEEE Trans. on Signal Processing 41, 821–848 (1993)MATHCrossRefGoogle Scholar
  18. 18.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. T-PAMI 13, 583–598 (1991)Google Scholar
  19. 19.
    Steger, C.: Subpixel-precise extraction of watersheds. In: Proc. of 7th ICCV, vol. 2, pp. 884–890. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  20. 20.
    Maxwell, J.C.: On hills and dales. In: Nivin, W.D. (ed.) The Scientific Papers of James Clerk Maxwell, vol. 2, pp. 233–240. Dover Publications, Mineola (1952) (reprinted)Google Scholar
  21. 21.
    Marr, D., Hildreth, E.C.: Theory of edge detection. Proceedings of the Royal Society of London B207, 187–217 (1980)CrossRefGoogle Scholar
  22. 22.
    Allgower, E.L., Georg, K.: Numerical path following. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 5, pp. 203–207. North-Holland, Amsterdam (1997)Google Scholar
  23. 23.
    Prasad, L.: Morphological analysis of shapes. CNLS Newsletter 139 (1997)Google Scholar
  24. 24.
    Guibas, L.J., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of voronoi diagrams. ACM Trans. on Graphics 4, 74–123 (1985)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hans Meine
    • 1
  • Ullrich Köthe
    • 1
  1. 1.Cognitive Systems LaboratoryUniversity of HamburgHamburgGermany

Personalised recommendations