Semantic Web Technologies Applied to Interoperability on an Educational Portal

  • Elder Rizzon Santos
  • Elisa Boff
  • Rosa Maria Vicari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4053)


This paper describes an approach to promote interoperability among heterogeneous agents that are part of an Educational Portal (PortEdu). We focus on a specific agent, the social agent, adding all the necessary functionality for him to interact with agents that aren’t fully aware of its context. The social agent belongs to a Multi-agent Learning Environment designed to support training of diagnostic reasoning and modeling of domains with complex and uncertain knowledge, AMPLIA. The knowledge of the social agent is implemented with Bayesian networks, which allows the agent to represent its probabilistic knowledge and make its decisions. However, to communicate with agents outside AMPLIA, it is necessary to express such probabilistic knowledge in a way that all agents may process. Such requirement is addressed using OWL, an ontology language developed by W3C to be used on the Semantic Web.


Bayesian Network Multiagent System Query Language Social Agent Ontology Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pan, R., Ding, Z., Yu, Y., Peng, Y.: A bayesian network approach to ontology mapping. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 563–577. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Carroll, J.J., et al.: Jena: Implementing the Semantic Web Recommendations. In: Proceedings of the 13th International World Wide Web Conference, pp. 74–83. ACM Press, New York (2004)Google Scholar
  3. 3.
    Fikes, R., Hayes, P., Horrocks, I.: OWL-QL - A Language for Deductive Query Answering on the Semantic Web. Journal of Web Semantics. Science Direct 2(1) (2005)Google Scholar
  4. 4.
    Grau, B.C., Parsia, B., Sirin, E.: Working with Multiple Ontologies on the Semantic Web. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 620–634. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bellifemine, F., Poggi, A., Rimassa, G.: Developing multiagent systems with a FIPA-compliant agent framework. In: Software - Practice & Experience, vol. 31, pp. 103–128. John Wiley & Sons, Ltd., Chichester (2001)Google Scholar
  6. 6.
    Horrocks, I., Patel-Schneider, P.F., Harmelen, P.F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1, 7–26 (2003)Google Scholar
  7. 7.
    Berners Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 35–43 (2001)CrossRefGoogle Scholar
  8. 8.
    Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using Ontologies in the Semantic Web: A Survey. In: Ontologies in the Context of Information Systems. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference,
  10. 10.
    Nakayama, L., Viccari, R.M., Coelho, H.: An Information Retrieving Service for Distance Learning. Transactions On Internet Research 1, 49–56 (2005)Google Scholar
  11. 11.
    Costa, P., Laskey, K.B., Laskey, K.J.: PR-OWL: A Bayesian Ontology Language for the Semantic Web. In: Proceedings of the Workshop on Uncertainty Reasoning for the Semantic Web, International Semantic Web Conference (to appear, 2005)Google Scholar
  12. 12.
    FIPA. FIPA ACL Message Structure Specification SC00061,
  13. 13.
  14. 14.
    Miller, L., Seaborne, A., Reggiori, A.: Three Implementations of SquishQL, a Simple RDF Query Language. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 423. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Vicari, R.M., Flores, C.D., Seixas, L., Silvestre, A., Ladeira, M., Coelho, H.: A Multi-Agent Intelligent Environment for Medical Knowledge. Journal of Artificial Intelligence in Medicine 27, 335–366 (2003)CrossRefGoogle Scholar
  16. 16.
    Maturana, H., Varela, F.: Tree of Knowledge: The Biological Roots of Human Understanding. Shambhala Publications, Boston (1998)Google Scholar
  17. 17.
    Aronson, E., Wilson, T.D., Akert, R.M.: Social Psychology, 5th edn. Prentice-Hall, Englewood Cliffs (2005)Google Scholar
  18. 18.
    Vassileva, J.: Multi-agent architectures for distributed learning environments. In: AIED Proceedings, vol. 12, pp. 1060–1069 (2001)Google Scholar
  19. 19.
    Castelfranchi, C., e Falcone, R.: Principles of Trust for MAS: Cognitive Anatomy, Social Importance and Qualification. In: ICMAS 1998 (1998)Google Scholar
  20. 20.
    Moreno, J.L.: Who Shall Survive? Foundations of Sociometry, Group Psychotherapy and Psychodrama. Beacon House, Beacon (1953)Google Scholar
  21. 21.
    Conati, C.: Probabilistic assessment of user’s emotions in educational games. Journal of Applied Artificial Intelligence 16(7-8), 555–575 (2002)CrossRefGoogle Scholar
  22. 22.
    Jaques, P.A., Viccari, R.M.: A BDI Approach to Infer Student’s Emotions. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS, vol. 3315, pp. 901–911. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Zou, Y., Finin, T., Li, D., Chen, H., Rong, P.: Using Semantic Web Technology in Multi-Agent Systems: A Case Study in the TAGA Trading Agent Environment. In: Proceeding of the 5th International Conference on Electronic Commerce, ICEC 2003, pp. 95–101. ACM Press, New York (2003)CrossRefGoogle Scholar
  24. 24.
    Wiesman, F., Roos, N.: Domain Independent Learning of Ontology Mappings. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 346–853. IEEE, Los Alamitos (2004)Google Scholar
  25. 25.
    The Protegé Ontology Editor and Knowledge Acquisition System, Available at:
  26. 26.
    Madsen, A.L., Jensen, F., Kjærulff, U.B., Lang, M.: HUGIN - The Tool for Bayesian Networks and Influence Diagrams. International Journal of Artificial Intelligence Tools 14(3), 507–543 (2005)CrossRefGoogle Scholar
  27. 27.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF(2006), Available at:
  28. 28.
    Laskey, K.B.: Costa, Paulo Of Klingons and Starships: Bayesian Logic for the 23rd Century. In: Uncertainty in Artificial Intelligence: Proceedings of the Twenty-first Conference. AUAI Press, Edinburgh (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Elder Rizzon Santos
    • 1
  • Elisa Boff
    • 1
    • 2
  • Rosa Maria Vicari
    • 1
  1. 1.Instituto de InformáticaFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Departamento de InformáticaCaxias do Sul University (UCS)Caxias do SulBrazil

Personalised recommendations