Multicriteria Automatic Essay Assessor Generation by Using TOPSIS Model and Genetic Algorithm

  • Shu-ling Cheng
  • Hae-Ching Chang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4053)


With the advance of computer technology and computing power, more efficient automatic essay assessment is coming to use. Essay assessment should be a multicriteria decision making problem, because an essay is composed of multiple concepts. While prior works have proposed several methods to assess students’ essays, little attention is paid to use multicriteria for essay evaluation. This paper presents a Multicriteria Automatic Essay Assessor (MAEA) based on combined Latent Semantic Analysis (LSA), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and Genetic Algorithm (GA) to assess essays. LSA is employed to construct concept dimensions, TOPSIS incorporated to model the multicriteria essay assessor, and GA used to find the optimal concept dimensions among LSA concept dimensions. To show the effectiveness of the method, the essays of students majoring in information management are evaluated by MAEA. The results show that MAEA’s scores are highly correlated with those of the human graders.


Genetic Algorithm Latent Semantic Analysis Multicriteria Decision Semantic Space Concept Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abo-Sinna, M.A., Amer, A.H.: Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Applied Mathematics and Computation, 243–256 (2005)Google Scholar
  2. 2.
    Chang, Y.-H., Yeh, C.-H.: Evaluating airline competitiveness using multiattribute decision making. Omega 29, 405–415 (2001)CrossRefGoogle Scholar
  3. 3.
    Clauser, B.E., Ross, L.P., Clyman, S.G., Rose, K.M., Margolis, M.J., Nungester, R.J., Piemme, T.E., Chang, L., El-Bayoumi, G., Malakoff, G.L., Pincetl, P.S.: Development of a scoring algorithm to replace expert rating for scoring a complex performance-based assessment. Applied Measurement in Education 10, 345–358 (1997)CrossRefGoogle Scholar
  4. 4.
    Dale, E., Chall, J.S.: A formula for predicting readability. Educational Research Bulletin 87, 11–20 (1948)Google Scholar
  5. 5.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)CrossRefGoogle Scholar
  6. 6.
    Deng, H., Yeh, C.-H., Willis, R.J.: Inter-company comparison using modified TOPSIS with objective weights. Computers and Operations Research 10, 963–973 (2000)CrossRefGoogle Scholar
  7. 7.
    Duwairi, R.M.: A framework for the computerized assesment of university student essays. Computers in Human Behavior 22, 381–388 (2006)CrossRefGoogle Scholar
  8. 8.
    Foltz, P.W.: Quantitative Approaches to Semantic Knowledge Representations. Discourse Processes 25, 127–130 (1998)CrossRefGoogle Scholar
  9. 9.
    Holland, J.H.: Adaption in natural and artificial systems. MIT Press, Massachusetts (1992)Google Scholar
  10. 10.
    Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applica-tions. Springer, New York (1981)Google Scholar
  11. 11.
    Landauer, T.K., Dumais, S.T.: A Solution to Plato’s Problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review 104, 211–240 (1997)CrossRefGoogle Scholar
  12. 12.
    Landauer, T.K., Laham, D., Foltz, P.W.: The intelligent Essay Assessor. IEEE Intelligent Systems 15, 27–31 (2000)Google Scholar
  13. 13.
    Landauer, T.K., Laham, D., Foltz, P.W.: Automatic essay assessment. Assessment in Education: Principles, Policy & Practice 10, 295–308 (2003)CrossRefGoogle Scholar
  14. 14.
    Landauer, T.K.F., Peter, W., Laham, D.: An Introduction to Latent Semantic Analysis. Discourse Processes 25, 259–284 (1998)CrossRefGoogle Scholar
  15. 15.
    Lemaire, B., Dessus, P.: A system to assess the semantic content of student essays. Journal of Educational Computing Research 24, 305–320 (2001)CrossRefGoogle Scholar
  16. 16.
    Martin-Bautista, M., Vila, M.-A., Larsen, H.L.: A fuzzy genetic algorithm approach to an adaptive information retrieval agent. Journal of the American Society for Information Science 50, 760–771 (1999)CrossRefGoogle Scholar
  17. 17.
    Miller, T.: Essay Assessment with Latent Semantic Analysis. Journal of Educational Computing Research 29, 495–512 (2003)CrossRefGoogle Scholar
  18. 18.
    Page, E.B.: The imminence of grading essays by computers. Phi Delta Kappan 47, 238–243 (1966)Google Scholar
  19. 19.
    Page, E.B.: Computer grading of student prose, using modern concepts and software. Journal of Experimental Education 62, 127–142 (1994)CrossRefGoogle Scholar
  20. 20.
    Page, E.B., Petersen, N.S.: The computer moves into essay grading: updating the ancient test. Phi Delta Kappan, 561–565 (1995)Google Scholar
  21. 21.
    Powers, D.E., Burstein, J.C., Chodorow, M., Fowles, M.E., Kukich, K.: Stumping e-rater: challenging the validity of automated essay scoring. Computers in Human Behavior 18, 103–134 (2002)CrossRefGoogle Scholar
  22. 22.
    Rehder, B., Schreiner, M.E., Wolfe, M.B.W., Laham, D., Landauer, T.K., Kintsch, W.: Using Latent Semantic Analysis to Assess Knowledge: Some Technical Considerations. Discourse Processes 25, 337–354 (1998)CrossRefGoogle Scholar
  23. 23.
    Wolfe, M.B.W., Schreiner, M.E., Rehder, B., Laham, D., Foltz, P.W., Kintsch, W., Lan-dauer, T.K.: Learning from Text: Matching Readers and Texts by Latent Semantic Analysis. Discourse Processes 25, 309–336 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shu-ling Cheng
    • 1
    • 2
  • Hae-Ching Chang
    • 1
  1. 1.Department of Business AdministrationNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Information ManagementFar East CollegeTainan CountyTaiwan

Personalised recommendations