A Relational Investigation of UTP Designs and Prescriptions

  • Moshe Deutsch
  • Martin C. Henson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4010)


This paper presents a mathematical investigation of the relationships among a number of approaches for specification and refinement in two well-known paradigms based on the idea of Unifying Theories of Programming: Hoare and He’s designs and Dunne’s prescriptions. We present the technical analysis in a proof-theoretic relational framework based on two-predicate schema specifications. This enables us to demonstrate the relationships among (what prima facie seem to be) different models of refinement associated with each of these paradigms.


Relational Investigation Schema Type Propositional Variable Notational Convention Total Correctness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azada, D., Muenchaisri, P. (eds.): APSEC 2003: Proceedings of the 10th Asia-Pacific Software Engineering Conference, Chiangmai, Thailand, December 10-12. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  2. 2.
    Bjørner, D., Hoare, C.A.R., Langmaack, H.: VDM 1990. LNCS, vol. 428. Springer, Heidelberg (1990)Google Scholar
  3. 3.
    Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.): ZB 2003. LNCS, vol. 2651. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z: Foundations and Advanced Applications. In: Formal Approaches to Computing and Information Technology – FACIT. Springer, Heidelberg (2001)Google Scholar
  5. 5.
    Derrick, J., Boiten, E.A. (eds.): REFINE 2005 International Workshop. Electronic Notes in Theoretical Computer Science. BCS-FACS (April 2005)Google Scholar
  6. 6.
    Deutsch, M.: An Analysis of Total Correctness Refinement Models for Partial Relation Semantics. PhD thesis, University of Essex (2005)Google Scholar
  7. 7.
    Deutsch, M., Henson, M.C.: An Analysis of Backward Simulation Data-Refinement for Partial Relation Semantics. In: APSEC 2003 [1], pp. 38–48 (2003)Google Scholar
  8. 8.
    Deutsch, M., Henson, M.C.: An Analysis of Forward Simulation Data Refinement. In: ZB 2003 [3], pp. 148–167 (2003)Google Scholar
  9. 9.
    Deutsch, M., Henson, M.C.: An Analysis of Operation-Refinement in an Abortive Paradigm. In: REFINE 2005 [5] (2005)Google Scholar
  10. 10.
    Deutsch, M., Henson, M.C., Reeves, S.: Results on Formal Stepwise Design in Z. In: Strooper, P., Muenchaisri, P. (eds.) APSEC 2002: Proceeding of the 9th Asia-Pacific Software Engineering Conference, Gold Coast, Queensland, Australia, December 4-6, pp. 33–42. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  11. 11.
    Deutsch, M., Henson, M.C., Reeves, S.: An analysis of total correctness refinement models for partial relation semantics I. Logic Journal of the IGPL 11(3), 287–317 (2003)MathSciNetMATHGoogle Scholar
  12. 12.
    Deutsch, M., Henson, M.C., Reeves, S.: Modular reasoning in Z: scrutinising monotonicity and refinement. University of Essex, technical report CSM-407 (under consideration of FACJ) (December 2003)Google Scholar
  13. 13.
    Deutsch, M., Henson, M.C., Reeves, S.: Operation Refinement and Monotonicity in the Schema Calculus. In: ZB 2003 [3], pp. 103–126 (2003)Google Scholar
  14. 14.
    Diller, A.: Z: An Introduction to Formal Methods, 2nd edn. J. Wiley and Sons, Chichester (1994)MATHGoogle Scholar
  15. 15.
    Dunne, S.E.: Recasting Hoare and He’s Unifying Theory of Programs in the Context of General Correctness. In: Butterfield, A., Strong, G., Pahl, C. (eds.) IWFM 2001: 5th Irish Workshop on Formal Methods, Dublin, Ireland, July 16-17, Workshops in Computing. BCS (2001)Google Scholar
  16. 16.
    Dunne, S.E.: A Predicative Model for General Correctness. Departmental Seminar, Department of Computer Science, University of Essex (March 2004)Google Scholar
  17. 17.
    Groves, L.J.: Evolutionary Software Development in the Refinement Calculus. PhD thesis, Victoria University (2000)Google Scholar
  18. 18.
    Hehner, E.C.R.: The Logic of Programming. Prentice Hall International, Englewood Cliffs (1984)Google Scholar
  19. 19.
    Henson, M.C., Deutsch, M., Kajtazi, B.: The Specification Logic vZ. University of Essex, technical report CSM-421 (2004)Google Scholar
  20. 20.
    Henson, M.C., Kajtazi, B.: The Specification Logic vZ. In: REFINE 2005 [5] (2005)Google Scholar
  21. 21.
    Henson, M.C., Reeves, S.: Investigating Z. Logic and Computation 10(1), 43–73 (2000)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Henson, M.C., Reeves, S.: A logic for schema-based program development. Formal Aspects of Computing 15(1), 84–99 (2003)CrossRefGoogle Scholar
  23. 23.
    Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall International, Englewood Cliffs (1998)Google Scholar
  24. 24.
    King, S.: Z and the Refinement Calculus. In: VDM 1990 [2], pp. 164–188 (1990)Google Scholar
  25. 25.
    Potter, B., Sinclair, J., Till, D.: An Introduction to Formal Specification and Z, 2nd edn. Prentice Hall, Englewood Cliffs (1996)MATHGoogle Scholar
  26. 26.
    Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  27. 27.
    Toyn, I. (ed.): Z Notation: Final Committee Draft, CD 13568.2. Z Standards Panel (1999)Google Scholar
  28. 28.
    Woodcock, J.C.P., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice-Hall, Englewood Cliffs (1996)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Moshe Deutsch
    • 1
  • Martin C. Henson
    • 1
  1. 1.Department of Computer ScienceUniversity of EssexUK

Personalised recommendations