Advertisement

Unifying Probability

  • Jifeng He
  • J. W. Sanders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4010)

Abstract

We demonstrate a new unification of probability with standard computation in which a nonzero chance of disaster is treated as disaster. Laws and a Galois connection with the more traditional probabilistic model are provided. Reversibility in the probabilistic guarded-command language is discussed. Finally the formalism is applied to unify quantum computation and cryptography within the probabilistic method.

Keywords

Quantum Computation Transformer Model Quantum Channel Relational Semantic Semantic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BB84]
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. IEEE Conference on Computers, Systems and Signal processing, Bangalore, pp. 175–179 (1984)Google Scholar
  2. [BBR88]
    Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public discussion. SIAM Journal of Computing 17(2), 210–229 (1988)CrossRefMathSciNetGoogle Scholar
  3. [BB92]
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Physical Review Letters 68(21), 3121–3124 (1992)CrossRefMathSciNetMATHGoogle Scholar
  4. [BH99]
    Butler, M.J., Hartel, P.: Reasoning about Grover’s quantum search algorithm using probabilistic wp. ACM Transactions on Programming Languages and Systems 21(3), 417–430 (1999)CrossRefGoogle Scholar
  5. [G96]
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th ACM STOC, pp. 212–219 (1996)Google Scholar
  6. [G99]
    Gruska, J.: Quantum Computing. Advanced Topics in Computer Science. McGraw-Hill International, UK (1999)Google Scholar
  7. [H92]
    Harel, D.: Algorithmics: The Spirit of Computing, 2nd edn. Addison Wesley, Reading (1992)MATHGoogle Scholar
  8. [HSM97]
    He, J., Seidel, K., McIver, A.K.: Probabilistic models for the guarded command language. Science of Computer Programming 28, 171–192 (1997)CrossRefMathSciNetMATHGoogle Scholar
  9. [H04]
    Hehner, E.R.: Probabilistic predicative programming. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 169–185. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. [HH98]
    Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, Englewood Cliffs (1998)Google Scholar
  11. [L61]
    Landauer, R.: Irreversibility and heat generated in the computing process. IBM Journal of Research and Development 5 (1961)Google Scholar
  12. [MM05]
    McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic Systems. Springer Monographs in Computer Science (2005)Google Scholar
  13. [NC00]
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  14. [SZ00]
    Sanders, J.W., Zuliani, P.: Quantum Programming. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 80–99. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. [SZL06]
    Stoddart, W.J., Zeyda, F., Lynas, R.: A design-based model of reversible computation. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 63–83. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. [WZ82]
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)CrossRefGoogle Scholar
  17. [Z01]
    Zuliani, P.: Logical reversibility. IBM Journal of Research and Development 45(6), 807–818 (2001)CrossRefGoogle Scholar
  18. [Z05]
    Zuliani, P.: Compiling Quantum Programs. Acta Informatica 41(7-8), 435–474 (2005)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jifeng He
    • 1
    • 2
  • J. W. Sanders
    • 1
    • 2
  1. 1.East China Normal UniversityShanghai
  2. 2.Programming Research GroupOxford

Personalised recommendations