Modelling and Simulation of Spontaneous Perception Switching with Ambiguous Visual Stimuli in Augmented Vision Systems

  • Norbert Fürstenau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4021)


A behavioral nonlinear dynamics model of multistable perception due to ambiguous visual stimuli is presented. The perception state is formalized as the dynamic phase variable v(t) of a recursive process with cosinuidal transfer characteristic which is created by superposition (interference) of neuronal mean fields. The two parameters μ = difference of meaning of alternative percepts and G = attention parameter, control the transition between unambiguous and ambiguous stimuli, e.g. from stimulus off to stimulus on, and attention fatigue respectively. Mean field interference with delayed phase feedback enables transitions between chaotic and limit cycle attractors v(t) representing the perception states. Perceptual reversals are induced by attention fatigue G(t) (  adaptive gain g(v)) with time constant γ, and attention bias which determines the relative duration of the percepts. The coupled attention – perception dynamics with an additive stochastic noise term reproduces the experimentally observed Γ-distribution of the reversal time statistics. Mean reversal times of typically 3 – 5 s as reported in the literature, are correctly predicted if delay T is associated with the delay of 40 ms between stimulus onset and primary visual cortex (V1) response. Numerically determined perceptual transition times of 3 – 5 T are in reasonable agreement with stimulus – conscious perception delay of 150 – 200 ms [11]. Eigenfrequencies of the limit cycle oscillations are in the range of 10 – 100 Hz, in agreement with typical EEG frequencies.


Attention Bias Reversal Time Feedback Gain Chaotic Oscillation Perception State 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peli, E.: Visual issues in the use of a head-mounted monocular display. Optical Engineering 29, 883–892 (1990)CrossRefGoogle Scholar
  2. 2.
    Laramee, R.S., Ware, C.: Rivalry and Interference with a Head Mounted Display. ACM Transactions on Computer-Human Interactions 9, 238–251 (2002)CrossRefGoogle Scholar
  3. 3.
    Engel, A.K., Fries, P., König, P., Brecht, M., Singer, W.: Temporal binding, binocular rivalry, and consciousness. Consciousness and Cognition 8, 128–151 (1999)CrossRefGoogle Scholar
  4. 4.
    Orbach, J., Ehrlich, D., Heath, H.A.: Reversibility of the Necker Cube: An examination of the concept of satiation of orientation. Perceptual and Motor Skills 17, 439–458 (1963)Google Scholar
  5. 5.
    Borsellino, A., de Marco, A., Allazetta, A., Rinesi, S., Bartolini, B.: Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik 10, 139–144 (1972)CrossRefGoogle Scholar
  6. 6.
    Hupe, J.-M., Rubin, N.: The dynamics of bistable alternation in ambiguous motion displays: a fresh look at plaids. Vision Research 43, 531–548 (2003)CrossRefGoogle Scholar
  7. 7.
    Richards, W., Wilson, H.R., Sommer, M.A.: Chaos in percepts. Biol. Cybern. 70, 345–349 (1994)CrossRefGoogle Scholar
  8. 8.
    Ditzinger, T., Haken, H.: A Synergetic Model of Multistability in Perception. In: Kruse, P., Stadler, M. (eds.) Ambiguity in Mind and Nature, pp. 255–273. Springer, Berlin (1995)Google Scholar
  9. 9.
    Kelso, J.A.S., Case, P., Holroyd, T., Horvath, E., Raczaszek, J., Tuller, B., Ding, M.: Multistability and metastability in perceptual and brain dynamics. In: Kruse, P., Stadler, M. (eds.) Ambiguity in Mind and Nature, pp. 255–273. Springer, Berlin (1995)Google Scholar
  10. 10.
    Merk, I.L.K., Schnakenberg, J.: A stochastic model of multistable perception. Biol. Cybern. 86, 111–116 (2002)MATHCrossRefGoogle Scholar
  11. 11.
    Lamme, V.A.F.: Why visual attention and awareness are different. Trends in Cognitive Sciences, 12–18 (2003)Google Scholar
  12. 12.
    Tononi, G., Edelman, G.M.: Consciousness and Complexity. Science 282, 1846–1851 (1998)CrossRefGoogle Scholar
  13. 13.
    Schuster, H.G., Wagner, P.A.: A Model for Neural Oscillations in the Visual Cortex: 1. Mean field theory and the derivation of the phase equations. Biol. Cybernetics 64, 77–82 (1990)MATHCrossRefGoogle Scholar
  14. 14.
    Blake, R., Logothetis, N.K.: Visual competition. Nature Reviews / Neuroscience 3, 1–11 (2002)Google Scholar
  15. 15.
    Engel, A.K., Fries, P., Singer, W.: Dynamic Predictions: Oscillations and Synchrony in Top-Down Processing. Nature Reviews Neuroscience 2, 704–718 (2001)CrossRefGoogle Scholar
  16. 16.
    Engel, A.K., Fries, P., König, P., Brecht, M., Singer, W.: Temporal binding, binocular rivalry, and consciousness. Consciousness and Cognition 8, 128–151 (1999)CrossRefGoogle Scholar
  17. 17.
    de Guzman, G.C., Kelso, J.A.S.: Multifrequency behavioral patterns and the phase attractive circle map. Biological Cybernetics 64, 485–495 (1991)CrossRefGoogle Scholar
  18. 18.
    Srinavasan, R., Russel, D.S., Edelman, G.M., Tononi, G.: Increased synchronization of magnetic responses during conscious perception. J. Neuroscience 19, 5435–5448 (1999)Google Scholar
  19. 19.
    Nakatani, H., van Leeuwen, C.: Individual differences in perceptual switching rates; the role of occipital alpha and frontal theta band activity. Biol. Cybern. 93, 343–354 (2005)MATHCrossRefGoogle Scholar
  20. 20.
    Poston, T., Stewart, I.: Nonlinear Modeling of Multistable Perception. Behavioral Science 23, 318–334 (1978)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Fürstenau, N.: Nonlinear dynamics model of cognitive multistability and binocular rivalry. In: Proceedings IEEE 2003 Int. Conf. on Systems, Man and Cybernetics, IEEE cat. no. 03CH37483C, pp. 1081–1088 (2003)Google Scholar
  22. 22.
    Fürstenau, N.: A chaotic attractor model of cognitive multistability. In: Proceedings IEEE Int. Conf. on Systems, Man and Cybernetics, IEEE cat. no. 04CH37583C, pp. 853–859 (2004)Google Scholar
  23. 23.
    Watts, C., Fürstenau, N.: Multistable fiber-optic Michelson Interferometer exhibiting 95 stable states. IEEE J. Quantum Electron 25, 1–5 (1989)CrossRefGoogle Scholar
  24. 24.
    Fürstenau, N.: Bistable fiber-optic Michelson interferometer that uses wavelength control. Optics Letters 16, 1896–1898 (1991)CrossRefGoogle Scholar
  25. 25.
    Edelman, G.: Wider than the Sky. Penguin Books, 87–96 (2004)Google Scholar
  26. 26.
    Hillyard, S.A., Vogel, E.K., Luck, S.J.: Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. In: Humphreys, G.W., Duncan, J., Treisman, A. (eds.) Attention, Space, and Action, pp. 31–53. Oxford University Press, Oxford (1999)Google Scholar
  27. 27.
    Zhou, Y.H., Gao, J.B., White, K.D., Merk, I., Yao, K.: Perceptual dominance time distributions in multistable visual perception. Biol. Cybern. 90, 256–263 (2004)MATHCrossRefGoogle Scholar
  28. 28.
    Lehky, S.R.: Binocular rivalry is not chaotic. Proc. R. Soc. Lond. B 259, 71–76 (1995)CrossRefGoogle Scholar
  29. 29.
    Levelt, W.J.M.: Note on the distribution of dominance times in binocular rivalry. Br. J. Psychol. 58, 143–145 (1967)Google Scholar
  30. 30.
    Murata, T., Matsui, N., Miyauchi, S., Kakita, Y., Yanagida, T.: Discrete stochastic process underlying perceptual rivalry. Neuro Report 14, 1347–1352 (2003)Google Scholar
  31. 31.
    Gao, J.B., Merk, I., Tung, W.W., Billok, V., White, K.D., Harris, J.G., Roychowdhury, V.P.: Inertia and memory in ambiguous visual perception. preprint Phys. Rev. Lett. (submitted, 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Norbert Fürstenau
    • 1
  1. 1.German Aerospace Center, Institute for Flight GuidanceBraunschweigGermany

Personalised recommendations