Advertisement

Guiding Eye Movements for Better Communication and Augmented Vision

  • Erhardt Barth
  • Michael Dorr
  • Martin Böhme
  • Karl Gegenfurtner
  • Thomas Martinetz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4021)

Abstract

This paper briefly summarises our results on gaze guidance such as to complement the demonstrations that we plan to present at the workshop. Our goal is to integrate gaze into visual communication systems by measuring and guiding eye movements. Our strategy is to predict a set of about ten salient locations and then change the probability for one of these candidates to be attended: for one candidate the probability is increased, for the others it is decreased. To increase saliency, in our current implementation, we show a natural-scene movie and overlay red dots very briefly such that they are hardly perceived consciously. To decrease the probability, for example, we locally reduce the temporal frequency content of the movie. We here present preliminary results, which show that the three steps of our above strategy are feasible. The long-term goal is to find the optimal real-time video transformation that minimises the difference between the actual and the desired eye movements without being obtrusive. Applications are in the area of vision-based communication, augmented vision, and learning.

Keywords

Candidate Location Saccade Amplitude Saccade Target Saliency Measure Natural Video 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dorr, M., Böhme, M., Martinetz, T., Barth, E.: Gaze-contingent spatio-temporal filtering in a head-mounted display. In: André, E., Dybkjær, L., Minker, W., Neumann, H., Weber, M. (eds.) PIT 2006. LNCS (LNAI), vol. 4021, pp. 205–207. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Meyer, A., Böhme, M., Martinetz, T., Barth, E.: A single-camera remote eye tracker. In: André, E., Dybkjær, L., Minker, W., Neumann, H., Weber, M. (eds.) PIT 2006. LNCS (LNAI), vol. 4021, pp. 208–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Dorr, M., Böhme, M., Martinetz, T., Gegenfurtner, K.R., Barth, E.: Analysing and reducing the variability of gaze patterns on natural videos. In: Groner, M., Groner, R., Müri, R., Koga, K., Raess, S., Sury, P. (eds.) Proceedings of 13th European Conference on Eye Movements, p. 35 (2005)Google Scholar
  4. 4.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)CrossRefGoogle Scholar
  5. 5.
    Barth, E., Drewes, J., Martinetz, T.: Individual predictions of eye-movements with dynamic scenes. In: Rogowitz, B., Pappas, T. (eds.) Electronic Imaging 2003, SPIE, vol. 5007, pp. 252–259 (2003)Google Scholar
  6. 6.
    Böhme, M., Dorr, M., Krause, C., Martinetz, T., Barth, E.: Eye movement predictions on natural videos. Neurocomputing (in press, 2006)Google Scholar
  7. 7.
    Zetzsche, C., Barth, E.: Fundamental limits of linear filters in the visual processing of two-dimensional signals. Vision Research 30, 1111–1117 (1990)CrossRefGoogle Scholar
  8. 8.
    Mota, C., Barth, E.: On the uniqueness of curvature features. In: Baratoff, G., Neumann, H. (eds.) Dynamische Perzeption. Proceedings in Artificial Intelligence, vol. 9, pp. 175–178. Infix Verlag, Köln (2000)Google Scholar
  9. 9.
    Barth, E., Watson, A.B.: A geometric framework for nonlinear visual coding. Optics Express 7, 155–165 (2000)CrossRefGoogle Scholar
  10. 10.
    Jaehne, B., Haußecker, H., Geißler, P. (eds.): Handbook of Computer Vision and Applications. Academic Press, London (1999)MATHGoogle Scholar
  11. 11.
    Böhme, M., Dorr, M., Krause, C., Martinetz, T., Barth, E.: Eye movement predictions on natural videos. Neurocomputing (in press, 2005)Google Scholar
  12. 12.
    Böhme, M., Dorr, M., Martinetz, T., Barth, E.: Gaze-contingent temporal filtering of video. In: Eye Tracking Research and Applications (ETRA) (in press, 2006)Google Scholar
  13. 13.
    Duchowski, A.T., Cournia, N., Murphy, H.: Gaze-contingent displays: A review. CyberPsychology & Behavior 7, 621–634 (2004)CrossRefGoogle Scholar
  14. 14.
    Kortum, P., Geisler, W.: Implementation of a foveated image coding system for image bandwidth reduction. In: Human Vision and Electronic Imaging, SPIE Proceedings, vol. 2657, pp. 350–360 (1996)Google Scholar
  15. 15.
    Geisler, W.S., Perry, J.S.: A real-time foveated multiresolution system for low-bandwidth video communication. In: Rogowitz, B., Pappas, T. (eds.) Human Vision and Electronic Imaging: SPIE Proceedings, pp. 294–305 (1998)Google Scholar
  16. 16.
    Perry, J.S., Geisler, W.S.: Gaze-contingent real-time simulation of arbitrary visual fields. In: Rogowitz, B.E., Pappas, T.N. (eds.) Human Vision and Electronic Imaging: Proceedings of SPIE, San Jose, CA, vol. 4662, pp. 57–69 (2002)Google Scholar
  17. 17.
    Dorr, M., Böhme, M., Martinetz, T., Barth, E.: Visibility of temporal blur on a gaze-contingent display. In: APGV 2005 ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization, pp. 33–36 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Erhardt Barth
    • 1
  • Michael Dorr
    • 1
  • Martin Böhme
    • 1
  • Karl Gegenfurtner
    • 2
  • Thomas Martinetz
    • 1
  1. 1.Institute for Neuro- and BioinformaticsUniversity of LübeckLübeckGermany
  2. 2.Allgemeine PsychologieJustus-Liebig-UniversityGießenGermany

Personalised recommendations