Context-Based Navigational Support in Hypermedia

  • Sebastian Stober
  • Andreas Nürnberger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4018)


In this paper, we present the system “DAWN” (direction anticipation in web navigation) that helps users to navigate through the world wide web. Firstly, the purpose of such a system and the approach taken are motivated. We then point out relations to other approaches, describe the system and outline the underlying prediction model. Evaluation on real world data gave promising results.


Link Prediction Navigational Pattern Candidate Page Special Similarity Measure Mining World Wide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lieberman, H.: Letizia: An Agent That Assists Web Browsing. IJCAI (1995)Google Scholar
  2. 2.
    Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: A Tour Guide for the World Wide Web. In: IJCAI 1997 (1997)Google Scholar
  3. 3.
    Chen, L., Sycara, K.: WebMate: A Personal Agent for Browsing and Searching. In: Proc. 2nd Intl. Conf. on Auton. Agents and Multi Agent Sys., AGENTS 1998 (1998)Google Scholar
  4. 4.
    Jaczynski, M., Trousse, B.: Broadway, A Case-Based Browsing Advisor for the Web. In: Nikolaou, C., Stephanidis, C. (eds.) ECDL 1998. LNCS, vol. 1513, p. 697. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Mladenic, D.: Machine learning used by Personal WebWatcher. In: Proc. of ACAI 1999 Workshop on Machine Learning and Intelligent Agents (1999)Google Scholar
  6. 6.
    Sarukkai, R.: Link Prediction and Path Analysis using Markov Chains. Computer Networks 33, 337–386 (2000)CrossRefGoogle Scholar
  7. 7.
    Anderson, C., Domingos, P., Weld, D.: Relational Markov Models and their Application to adaptive Web Navigation. In: Proc. 8th ACM SIGKDD Intl. Conf. on Knowl. Discovery and Data Mining 2004 (2004)Google Scholar
  8. 8.
    Zhu, J., Hong, J., Hughes, J.: Using Markov Chains for Link Prediction in Adaptive Web Sites. In: SoftWare 2002: Comp. in an Imperfect World: 1st Intl. Conf. 2002 (2002)Google Scholar
  9. 9.
    Cadez, I., Heckerman, D., Meek, C., Smyth, D., White, S.: Model-Based Clustering and Visualization of Navigation Patterns on a Web Site. Data Min. Knowl. Discov. 7, 399–424 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Borges, J., Levene, M.: A Clustering-Based Approach for Modelling User Navigation with Increased Accuracy. In: Proc. of the 2nd Intl. Workshop on Knowl. Discovery from Data Streams (IWKDDS) & PKDD 2005 (2005)Google Scholar
  11. 11.
    Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide Web Browsing Patterns. Knowl. and Information Sys. 1(1), 5–32 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sebastian Stober
    • 1
  • Andreas Nürnberger
    • 1
  1. 1.Institut für Wissens- und Sprachverarbeitung, Fakultät für InformatikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations