Adaptation of Cross-Media Surveys to Heterogeneous Target Groups

  • Alexander Lorz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4018)


Adaptive surveys provide an efficient method for customizing questionnaires to the particular requirements of a study and specific features of the respondent. Hypermedia can enhance the presentation of questionnaires and enables interactive feedback. As comparability of survey results is crucial, adaptation is constrained by the requirement of cognitive equivalence. The scenario of a survey-based early warning system for virtual enterprises supplies a context for the discussion of further requirements concerning structure, markup, and adaptation of surveys. An XML markup for adaptive surveys is proposed that is applied within a survey system for virtual enterprises.


survey adaptation adaptive questionnaire XML 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    @VirtU: Participative Development of Diagnostic Early Warning Systems for Work in Virtual Corporations (2006),
  2. 2.
    Meyer, J., Engel, A., Wiedemann, J., Richter, P.: Performance and Job Satisfaction in Virtual Teams. In: XII. European Congress of Work and Organizational Psychology - Convivence in Organizations and Society, Istanbul (2005)Google Scholar
  3. 3.
    Philology Pty. Ltd.: QEDML – Questionnaire Exchange and Deployment Markup Language (2004),
  4. 4.
    IQML-Project Group: IQML – A Software Suite and XML Standard for Intelligent Questionnaires (2003),
  5. 5.
    Triple-S Group: Triple-S – Open Survey Interchange Standard (2005),
  6. 6.
    Toubia, O., Hauser, J., Simester, D.: Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis. Working papers 4285-03, Massachusetts Institute of Technology (MIT), Sloan School of Management (2003)Google Scholar
  7. 7.
    Abernethy, J., Evgeniou, T., Vert, J.P.: An Optimization Framework for Adaptive Questionnaire Design. Working paper, INSEAD, Fontainebleau, France (2004)Google Scholar
  8. 8.
    Lobach, D.F., Arbanas, J.M., Mishra, D.D., Campbell, M., Wildemuth, B.M.: Adapting the Human-Computer Interface for Reading Literacy and Computer Skill to Facilitate Collection of Information Directly from Patients. In: MedInfo, vol. 11 (Pt. 2), pp. 1142–1146 (2004)Google Scholar
  9. 9.
    Kurhila, J., Miettinen, M., Niemivirta, M., Nokelainen, P., Silander, T., Tirri, H.: Bayesian Modeling in an Adaptive On-Line Questionnaire for Education and Educational Research. In: Ruokamo, H., Nykänen, O., Pohjolainen, S., Hietala, P. (eds.) 10th International PEG Conference, Tampere, Finland, pp. 194–201 (2001)Google Scholar
  10. 10.
    Desmarais, M.C., Maluf, D., Liu, J.: Adaptive Training Based Upon Computerized Knowledge Assessment. In: Fourth International Conference on User Modeling, pp. 102–112 (1994)Google Scholar
  11. 11.
    McDonald, R.P.: Test theory : a unified treatment. Lawrence Erlbaum Associates, Mahwah, New Jersey (1999)Google Scholar
  12. 12.
    Kobrin, J.L., Young, J.W.: The Cognitive Equivalence of Reading Comprehension Test Items Via Computerized and Paper-and-Pencil Administration. Applied Measurement in Education 16(2), 115–140 (2003)CrossRefGoogle Scholar
  13. 13.
    Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interaction 11(1-2), 87–110 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexander Lorz
    • 1
  1. 1.Multimedia Technology GroupDresden University of TechnologyGermany

Personalised recommendations