Segmentation and Retrieval of Ancient Graphic Documents

  • Surapong Uttama
  • Pierre Loonis
  • Mathieu Delalandre
  • Jean-Marc Ogier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3926)


The restoration and preservation of ancient documents is becoming an interesting application in document image analysis. This paper introduces a novel approach aimed at segmenting the graphical part in historical heritage called lettrine and extracting its signatures in order to develop a Content-Based Image Retrieval (CBIR) system. The research principle is established on the concept of invariant texture analysis (Co-occurrence and Run-length matrices, Autocorrelation function and Wold decomposition) and signature extraction (Mininum Spanning Tree and Pairwise Geometric Attributes). The experimental results are presented by highlighting difficulties related to the nature of strokes and textures in lettrine. The signatures extracted from segmented areas of interest are informative enough to gain a reliable CBIR system.


Minimum Span Tree Query Image Texture Region CBIR System Segmented Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Shahar, O., Zucker, S.W.: Sensitivity to curvatures in orientation-based texture segmentation. Vision Research 44(3), 257–277 (2004)CrossRefGoogle Scholar
  2. 2.
    Brodatz, P.: Texture-A Photographic Album for Artists and Designers. Dover, New York (1966)Google Scholar
  3. 3.
    Bharati, M.H., Liu, J.J., MacGregor, J.F.: Image texture analysis: methods and comparisons. Chemometrics and Intelligent Laboratory Systems 72, 57–71 (2004)CrossRefGoogle Scholar
  4. 4.
    Haralick, R.M., Hanmugan, K., Dinstein, I.: Textural features for image classification. IEEE transactions on Systems, Man, and Cybernetics 3, 610–621 (1973)CrossRefGoogle Scholar
  5. 5.
    Sriram, R., Francos, J.M., Pearlman, W.A.: Texture Coding Using a Wold Decomposition Based Model. IEEE transactions on Image Processing 5, 1382–1386 (1996)CrossRefGoogle Scholar
  6. 6.
    Bigün, J., Bhattacharjee, S.K., Michel, S.: Orientation Radiograms for Image Retrieval: An Alternative to Segmentation. In: Proc. 13th Int. Conf. Pattern Recognition, Vienna, Austria, August 25-30 (1996)Google Scholar
  7. 7.
    Baudrier, E.: Comparaison d’images binaires reposant sur une mesure locale des dissimilarités Application à la classification, Ph.D. Thesis, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 176 p. (2005)Google Scholar
  8. 8.
    Tang, X.: Texture Information in Run-Length Matrices. IEEE transactions on image processing 7, 1602–1609 (1998)CrossRefGoogle Scholar
  9. 9.
    Rosenberger, C.: Mise en Oeuvre d’un système Adaptative de Segmentation d’Images, Ph.D. Thesis.: Rennes, 172 p. (1999)Google Scholar
  10. 10.
    Huet, B., Hancock, E.R.: Line Pattern Retrieval Using Relational Histograms. IEEE transactions on Pattern Analysis and Machine Intelligence 21(12) (December 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Surapong Uttama
    • 1
  • Pierre Loonis
    • 1
  • Mathieu Delalandre
    • 1
  • Jean-Marc Ogier
    • 1
  1. 1.Faculty of Sciences and Technology, L3i Research LaboratoryUniversité de, La RochelleLa RochelleFrance

Personalised recommendations