Advertisement

Robust Moment Invariant with Higher Discriminant Factor Based on Fisher Discriminant Analysis for Symbol Recognition

  • Widya Andyardja Weliamto
  • Hock Soon Seah
  • Antonius Wibowo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3926)

Abstract

In this paper, we propose a robust moment invariant which has a higher discriminant factor based on Fisher linear discriminant analysis that can deal with noise degradation, deformation of vector distortion, translation, rotation and scale invariant. The proposed system for the symbol recognition consists of 3 steps: 1) degradation model preprocessing step, 2) a different normalization for the second moment invariant and a measure for roundness and eccentricity for feature extraction step, 3) k-Nearest Neighbor with Mahalanobis distance compared to Euclidean distance and k-D tree for classifier. A comparison using multi-layer feed forward neural network classifier is given. An improvement of the discriminant factor around 4 times is achieved compared to that of the original normalized second moments using GREC 2005 dataset. Experimentally we tested our system with 3300 training images using k-NN classifier and on all 9450 images given in the dataset and achieved recognition rates higher than 86 % for all degradation models and 96 % for degradation models 1 to 4.

Keywords

Recognition Rate Noise Type Moment Invariant Neural Network Classifier High Recognition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, S.: Symbol Recognition via Statistical Integration of Pixel-Level Constraint Histograms: A New Descriptor. IEEE Trans. Pattern Analysis & Machine Intelligent 27(2), 278–281 (2005)CrossRefGoogle Scholar
  2. 2.
    Valveny, E., Dosch, P.: Symbol Recognition Contest: A Synthesis. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 368–385. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Hu, M.K.: Visual Pattern Recognition by Moment Invariants. IRE Trans. Information Theory 8, 179–187 (1962)MATHGoogle Scholar
  4. 4.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall Inc., Englewood Cliffs (1989)MATHGoogle Scholar
  5. 5.
    Gonzales, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall Inc., Englewood Cliffs (2002)Google Scholar
  6. 6.
    Mindru, F., Tuytelaars, T., Gool, L.V., Moons, T.: Moment Invariants for Recognition under Changing Viewpoint and Illumination. Computer Vision and Image Understanding 94, 3–27 (2004)CrossRefGoogle Scholar
  7. 7.
    Rothe, I., Susse, H., Voss, K.: The Method of Normalization to Determine Invariants. IEEE Trans. Pattern Analysis and Machine Intelligent 18(4), 366–376 (1996)CrossRefGoogle Scholar
  8. 8.
    Reiss, T.H.: The Revised Fundamental Theorem of Moment Invariants. IEEE Trans. Pattern Analysis and Machine Intelligent 13(8), 830–834 (1991)CrossRefGoogle Scholar
  9. 9.
    De Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    Zhang, J., Zhang, W., Wenyin, L.: Adaptive Noise Reduction for Engineering Drawings based on Primitives and Noise Assessment. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 140–150. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Weliamto, W.A., Seah, H.S.: Robust Moment Invariant with Higher Discriminant Factor for Symbol Recognition. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 408–421. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Widya Andyardja Weliamto
    • 1
  • Hock Soon Seah
    • 1
  • Antonius Wibowo
    • 2
  1. 1.School of Computer EngineeringNanyang Technological UniversitySingapore
  2. 2.Department of Electrical EngineeringBandung Institute of TechnologyIndonesia

Personalised recommendations