Biometric Recognition Based on Line Shape Descriptors

  • Anton Cervantes
  • Gemma Sánchez
  • Josep Lladós
  • Agnès Borràs
  • Ana Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3926)


In this paper we propose biometric descriptors inspired by shape signatures traditionally used in graphics recognition approaches. In particular several methods based on line shape descriptors used to identify newborns from the biometric information of the ears are developed. The process steps are the following: image acquisition, ear segmentation, ear normalization, feature extraction and identification. Several shape signatures are defined from contour images. These are formulated in terms of zoning and contour crossings descriptors. Experimental results are presented to demonstrate the effectiveness of the used techniques.


Feature Extraction Recognition Process Shape Signature Grey Level Image Canny Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A.K.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Image- and Video-Based Biometrics 14(1) (January 2004)Google Scholar
  2. 2.
    Serrau, A., Marcialis, G.L., Bunke, H., Roli, F.: An Experimental Comparison of Fingerprint Classification Methods Using Graphs. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 281–290. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Govindaraju, V., Shi, Z., Schneider, J.: Feature Extraction Using a Chaincoded Contour Representation of Fingerprint Images. In: AVBPA. pp. 268–275 (2003)Google Scholar
  4. 4.
    Xu, Z., Guo, X., Hu, X., Chen, X., Wang, Z.: The Recognition Based on Shape for Blood Vessel of Ocular Fundus. In: Proceedings of Sixth IAPR International Conference on Graphics Recognition (GREC 2005), pp. 129–135 (2005)Google Scholar
  5. 5.
    Choras, M.: Ear Biometrics Based on Geometrical Method of Feature Extraction. In: Perales, F.J., Draper, B.A. (eds.) AMDO 2004. LNCS, vol. 3179, pp. 51–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Mu, Z.: Shape and Structural Feature Based Ear Recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 663–670. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Babler, W.J.: Embryologic Development of Epidermial Ridges and Their Configuration. Birth Defects Original Article Series, 27(2) (1991)Google Scholar
  8. 8.
    Cervantes, A.F.: Biometric Newborn Identification. Master Thesis, Universitat Autónoma de Barcelona - Computer Vision Center (September 2005)Google Scholar
  9. 9.
    Burge, M.: Ear Biometrics, Johannes Kepler University, Linz, Austria (1999)Google Scholar
  10. 10.
    Hurley, D.J.: Force Field Feature Extraction for Ear Biometrics. Computer Vision and Image Understanding 98, 491–512 (2005)CrossRefGoogle Scholar
  11. 11.
    Loncaric, S.: A Survey of Shape Analysis Techniques. Pattern Recognition 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  12. 12.
    Zhang, D.: Review of Shape Representation and Description Techniques. Pattern Recognition 37, 1–19 (2004)CrossRefGoogle Scholar
  13. 13.
    Veltkamp, R.C., Hagedoorn, M.: State-of-the-art in shape matching. Technical Report UU-CS-1999-27, Utrecht University, the Netherlands (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anton Cervantes
    • 1
  • Gemma Sánchez
    • 1
  • Josep Lladós
    • 1
  • Agnès Borràs
    • 1
  • Ana Rodríguez
    • 2
  1. 1.Centre de Visió per Computador i Departament de Ciències de la ComputacióUniversitat Autònoma de BarcelonaBellaterra, CataloniaSpain
  2. 2.Hospital Universitari Arnau de VilanovaLleida, CataloniaSpain

Personalised recommendations