Using a Neighbourhood Graph Based on Voronoï Tessellation with DMOS, a Generic Method for Structured Document Recognition

  • Aurélie Lemaitre
  • Bertrand Coüasnon
  • Ivan Leplumey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3926)


To develop a method for structured document recognition, it is necessary to know the relative position of the graphical elements in a document. In order to deal with this notion, we build a neighbourhood graph based on Voronoï tessellation. We propose to combine the use of this interesting notion of neighbourhood with an existing generic document recognition method, DMOS, which has been used to describe various kinds of documents. This association allows exploiting different aspects of the neighbourhood graph, separating the graph analysis from the knowledge linked to a kind of document, and establishing a bi-directional context-based relation between the analyser and the graph. We apply this method on the analysis of various documents.


Document Image Neighbourhood Graph Archive Document Structure Recognition Handwritten Document 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coüasnon, B.: DMOS: A generic document recognition method to application to an automatic generator of musical scores, mathematical formulae and table structures recognition systems. In: International Conference on Document Analysis (ICDAR 2001), pp. 215–220 (2001)Google Scholar
  2. 2.
    Coüasnon, B.: Dealing with noise in DMOS, a generic method for structured document recognition: an example on a complete grammar. Graphics Recognition: Recent Advances and Perspectives, 38–49 (2004)Google Scholar
  3. 3.
    Coüasnon, B., Camillerapp, J., Leplumey, I.: Making Handwritten Archives Documents accessible to Public with a Generic System of Document Image Analysis. In: International Workshop on Document Image Analysis for Libraries (DIAL 2004), pp. 270–277 (2004)Google Scholar
  4. 4.
    Kise, K., Iwata, M., Matsumoto, K.: On the application of Voronoï diagrams to page segmentation. In: Document Layout Interpretation and its Application (DLIA 1999) (1999)Google Scholar
  5. 5.
    Leplumey, I., Queguiner, C.: Un graphe de voisinage basé sur l’utilisation des distances discrétes. In: Conférence Internationale Francophone sur l’Ecrit et le Document (CIFE 2002), pp. 41–50 (2002)Google Scholar
  6. 6.
    Lu, Y., Wang, Z., Tan, C.L.: Word grouping in document images based on Voronoï tessellation. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 147–157. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Lu, Y., Tan, C.L.: Constructing Area Voronoï Diagram in Document Images. In: International Conference on Document Analysis (ICDAR 2005), pp. 342–346 (2005)Google Scholar
  8. 8.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoï Diagrams. Wiley, Chichester (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aurélie Lemaitre
    • 1
  • Bertrand Coüasnon
    • 1
  • Ivan Leplumey
    • 2
  1. 1.IRISA/INRIARennesFrance
  2. 2.IRISA/INSARennesFrance

Personalised recommendations