Advertisement

Scanning Thermal Microscopy

  • Bernard Cretin
  • Séverine Gomès
  • Nathalie Trannoy
  • Pascal Vairac
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 107)

Abstract

Fundamental research and continued miniaturisation of systems (materials or components) have instigated and still require today the development of specific investigative methods for studying phenomena or properties in many areas of science. This Chapter is concerned with a whole range of methods based on near-field microscopy and developed for the study of micro- and nanoheat transfer. Section 1 describes the working principles of various near-field microscopes as a prerequisite to understanding how they are put to use in the study of heat transfer. Section 2 discusses the type of information than can be obtained and describes the main developments that have given access to such information. Section 3 describes a certain type of local probe microscopy that plays an important part in the science of microheat transfer.

Keywords

65.80.+n 82.53.Mj 81.16.-c 44.10.+i 44.40.+a 82.80.Kq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. J. Croft: Under the Microscope: A Brief History of Microscopy, Series in Popular Science (World Scientific Publishing Company, Singapore 2004) Google Scholar
  2. R. S. Clay, T. H. Court: The History of the Microscope (Charles Griffin and Company, London 1932) zbMATHGoogle Scholar
  3. D. B. Murphy: Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss 2001) Google Scholar
  4. J. W. Goodman: Introduction to Fourier Optics (McGraw-Hill, New York 1996) Google Scholar
  5. M. Born, E. Wolf: Principles of Optics, 7 ed. (Cambridge University Press, Cambridge 1999) zbMATHGoogle Scholar
  6. A. R. Hibbs: Confocal Microscopy for Biologists (Springer, Heidelberg 2004) Google Scholar
  7. F. S. Crawford: Waves, vol. 3, Berkeley Physics Course (1965) Google Scholar
  8. L. Reimer: Scanning Electron Microscopy. Physics of Image Formation and Microanalysis, 3 ed. (Springer, Berlin 1993) Google Scholar
  9. J. C. H. Spence: Experimental High-Resolution Electron Microscopy, 2 ed. (Oxford University Press, New York and Oxford 1988) Google Scholar
  10. B. T. Khuri-Yakub, C. F. Quate: Selected Papers on Scanning Acoustic Microscopy, vol. MS 53, SPIE Milestone Series (1992) Google Scholar
  11. G. M. Crean, M. Locatelli, J. McGilp: Acoustic, Thermal Wave and Optical Characterization of Materials, European Materials Research Society Symposia Proceedings 11 (North-Holland 1990) Google Scholar
  12. G. A. Briggs: Advances in Acoustic Microscopy (Plenum Press 1995) Google Scholar
  13. G. Busse, A. Rosencwaig: Subsurface imaging with photoacoustics, Appl. Phys. Lett. 36, 815–816 (1980) CrossRefADSGoogle Scholar
  14. G. Gaussorgues: La thermographie infrarouge. Technique et documentation (Lavoisier 1984) Google Scholar
  15. A. Mandelis: Non-Destructive Evaluation (Prentice Hall 1994) Google Scholar
  16. D. Maillet, J. C. Batsale, A. Bendada, A. Degiovanni: M'ethodes int'egrales et contr^ ole non-destructif par thermographie infrarouge stimul'ee, Revue G'en'erale de Thermique 35, 14S–27S (1996) Google Scholar
  17. S. Grauby, B. C. Forget, S. Hol'e, D. Fournier: High resolution photothermal imaging of high frequency phenomena using a visible CCD camera associated with a multichannel lock-in scheme, Rev. Sci. Instrum. 70, 3603–3608 (1999) CrossRefADSGoogle Scholar
  18. S. Gom`es, N. Trannoy, F. Depasse, P. Grossel: AC scanning thermal microscopy: Tip–sample interaction and buried defect modellings, Int. J. Therm. Sci. Microsc. 39, 526 (2000) CrossRefGoogle Scholar
  19. B. Cretin: Recent advances in thermoelastic and acoustic microscopy using a local probe, Condens. Matter News 7, 13–18 (1999) Google Scholar
  20. B. Bonello, B. Perrin, C. Rossignol: Photothermal properties of bulk and layered materials by the picosecond acoustics technique, J. Appl. Phys. 83, 3081–3088 (1998) CrossRefADSGoogle Scholar
  21. G. Binnig, H. Rohrer: Scanning tunneling microscopy, Helvetica Physica Acta 55, 726–735 (1982) Google Scholar
  22. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–60 (1982) CrossRefADSGoogle Scholar
  23. G. Binnig, H. Rohrer: Le microscope `a balayage `a effet tunnel, Pour la Science (1985) Google Scholar
  24. E. Chpolski: Physique atomique, 2 volumes (Mir Editions, Moscow 1978) Google Scholar
  25. G. Binnig, C. F. Quate, C. Gerber: Atomic force microscopy, Phys. Rev. Lett. 56, 930–933 (1986) CrossRefADSGoogle Scholar
  26. J. K. Zienuk, A. Latusezk: Non-conventional pin scanning ultrasonic microscopy, Acoust. Imag. 17, 219–224 (1989) Google Scholar
  27. K. Takata, T. Hasegawa, S. Hosaka, S. Hosoki, T. Komoda: Tunneling acoustic microscopy, Appl. Phys. Lett. 55, 1718–1720 (1989) CrossRefADSGoogle Scholar
  28. D. Sarid: Scanning Force Microscopy (Oxford University Press, Oxford 1994) Google Scholar
  29. K. L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge 1987) zbMATHGoogle Scholar
  30. E. A. Ash, G. Nicholls: Super-resolution aperture scanning microscope, Nature 237, 510–512 (1972) CrossRefADSGoogle Scholar
  31. U. C. Fischer, U. T. Dürig, D. W. Pohl: Near-field optical scanning microscopy in reflection, Appl. Phys. Lett. 52, 249–251 (1988) CrossRefADSGoogle Scholar
  32. D. Courjon, K. Sarayeddine, M. Spajer: Scanning tunneling optical microscopy, Opt. Commun. 71, 23–28 (1989) CrossRefADSGoogle Scholar
  33. L. Porte, D. Courjon: Les microscopes en champ proche ou `a sonde locale, Spectra 2000, 164, 40–48 (1992) Google Scholar
  34. E. Dieulesaint, D. Royer: Ondes 'elastiques dans les solides (Masson, Paris 1974) Google Scholar
  35. P. Günther, V. C. Fischer, K. Dransfeld: Scanning near-field acoustic microscopy, Appl. Phys. B 48, 89–92 (1989) CrossRefADSGoogle Scholar
  36. U. Rabe, K. Janser, W. Arnold: Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment, Rev. Sci. Instrum. 67, 3281–3293 (1996) CrossRefADSGoogle Scholar
  37. P. E. Mazeran, J. L. Loubet: Force modulation with a scanning force microscope: An analysis, Trib. Lett. 3, 125 (1996) CrossRefGoogle Scholar
  38. F. Oulevey, G. Gremaud, A. S'emoroz, A. J. Kulik, N. A. Burnham, E. Dupas, D. Gourdon: Local mechanical spectroscopy with nanometer scale lateral resolution, Rev. Sci. Instrum. 69, 2085–2094 (1998) CrossRefADSGoogle Scholar
  39. U. Rabe, E. Kester, W. Arnold: Probing linear and nonlinear tip–sample interaction forces by atomic force acoustic microscopy, Surf. Interf. Anal. 27, 386–391 (1999) CrossRefGoogle Scholar
  40. O. Kolosov, K. Yamanaka: Nonlinear detection of ultrasonic vibrations in an atomic force microscope, Jpn. J. Appl. Phys. Lett. 32, 22–25 (1993) CrossRefGoogle Scholar
  41. P. Vairac, B. Cretin: Scanning microdeformation microscopy in reflection mode, Appl. Phys. Lett. 68, 461–463 (1996) CrossRefADSGoogle Scholar
  42. P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, P. K. Hansma: Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnol. 2, 103–106 (1991) CrossRefADSGoogle Scholar
  43. L. Robert, B. Cretin: Experimental determination of the observation depth in scanning microdeformation microscopy, Surf. Interf. Anal. 27, 568–571 (1999) CrossRefGoogle Scholar
  44. C. C. Williams, K. Wickramasinghe: Scanning thermal profiler, Appl. Phys. Lett. 49–23, 1587–1589 (1986) CrossRefGoogle Scholar
  45. C. C. Williams, H. K. Wickramasinghe: Proceedings of the 5th International Meeting on Photoacoustic and Photothermal Phenomema (Heidelberg 1987) pp. 364–369 Google Scholar
  46. C. C. Williams, K. Wickramasinghe: Thermal and photothermal imaging on a sub-100 nanometer scale, SPIE, Scanning Microscopy Technologies and Applications 897, 129–134 (1988) Google Scholar
  47. J. M. R. Weaver, L. M. Walpita, H. K. Wickramasinghe: Optical absorption microscopy and spectroscopy with nanometer resolution, Nature Lett. 342, 783–785 (1989) CrossRefADSGoogle Scholar
  48. C. C. Williams, K. Wickramasinghe: Microscopy of chemical-potential variations on an atomic scale, Nature 344, 317–319 (1990) CrossRefADSGoogle Scholar
  49. M. Stopka, L. Hadjiiski, E. Oesterschulze, R. Kassing: Surface investigations by scanning thermal microscope, J. Vac. Sci. Technol. B 13, 2153–2156 (1995) CrossRefGoogle Scholar
  50. E. Oesterschulze, M. Stopka, R. Kassing: Photothermal characterization of solids and thin films by optical and scanning probe techniques, Microelectron. Eng. 24, 107–112 (1994) CrossRefGoogle Scholar
  51. E. Oesterschulze, M. Stopka, L. Ackermann, W. Scholz, S. Werner: Thermal imaging of thin films by scanning thermal microscope, J. Vac. Sci. Technol. B 14, 832–837 (1996) CrossRefGoogle Scholar
  52. E. Oesterschulze, M. Stopka: Photothermal imaging by scanning thermal microscopy, J. Vac. Sci. Technol. A 14, 1172–1177 (1996) CrossRefADSGoogle Scholar
  53. N. Trannoy: Contribution `a l''etude d'effets thermiques li'es `a l'excitation laser dans un microscope `a effet tunnel: 'Etude de l''echantillon et de la pointe, rôle du couplage pointe-'echantillon, Ph.D. thesis, University of Reims, France (1997) Google Scholar
  54. N. Trannoy, P. Grossel, M. Troyon: Thermal effects induced by laser interaction in scanning tunneling microscopy: Thermal expansion of sample and tip influence, Probe Microsc. 1, 201–206 (1998) Google Scholar
  55. N. Trannoy, P. Grossel: Thermal multilayer with recursive method, in Proceedings of the EUROTHERM Congress, Seminar 53: Advanced Concepts and Techniques in Thermal Modelling (Elsevier Science, Mons 1997) Google Scholar
  56. P. Grossel, F. Depasse, N. Trannoy: Sample–tip thermal coupling in modulated laser surface excitation, Int. J. Eng. Sci. 35, 699–709 (1997) zbMATHCrossRefGoogle Scholar
  57. D. H. Hoffmann, A. Rettenberger, J. Y. Grand, K. Laüger, P. Leiderer, K. Dransfeld, R. Möller: Thermovoltages in vacuum tunneling investigated by scanning tunneling microscopy, Thin Solid Films 264, 223–225 (1995) CrossRefADSGoogle Scholar
  58. M. J. Hagmann: Simulations of rectification in a laser-illuminated scanning tunneling microscope, Appl. Surf. Sci. 87/88, 368–372 (1995) CrossRefADSGoogle Scholar
  59. M. J. Hagmann: Microwave tunneling current from the resonant interaction of an amplitude modulated laser with a scanning tunneling microscope, J. Vac. Sci. Technol. B 14, 838–841 (1996) CrossRefGoogle Scholar
  60. M. Nonnenmacher, K. Wickramasinghe: Scanning probe microscopy of thermal conductivity and subsurface properties, Appl. Phys. Lett. 61, 168–170 (1992) CrossRefADSGoogle Scholar
  61. A. Majumdar, J. P. Carrejo, J. Lai: Thermal imaging using the atomic force microscope, Appl. Phys. Lett. 62, 2501–2503 (1993) CrossRefADSGoogle Scholar
  62. A. Majumdar, M. Chandrachood, J. Lai, O. Nakabeppu, Y. Wu, Z. Shu: Thermal imaging by atomic force microscopy using thermocouple cantilever probes, Rev. Sci. Instrum. 66, 3584–3592 (1995) CrossRefADSGoogle Scholar
  63. R. Pylkki, P. J. Moyer, P. E. West: Scanning near-field optical microscopy and scanning thermal microscopy, J. Appl. Phys. 33, 3785–3790 (1994) CrossRefGoogle Scholar
  64. R. B. Dinwiddie, R. J. Pylkki, P. E. West: Thermal conductivity contrast imaging with a scanning thermal microscope, in T. W. Tong (Ed.): Thermal Conductivity, vol. 22 (Technomic Publishing, Lancaster 1994) pp. 668–677 Google Scholar
  65. K. Luo, Z. Shi, J. Lai, A. Majumdar: Nanofabrication of sensors on cantilever probe tips for scanning multiprobe microscopy, Appl. Phys. Lett. 68, 325–327 (1996) CrossRefADSGoogle Scholar
  66. K. Luo, Z. Shi, J. Varesi, A. Majumdar: Sensor nanofabrication, performance and conduction mechanisms in scanning thermal microscopy, J. Vac. Sci. Technol. B 15, 349–360 (1997) CrossRefGoogle Scholar
  67. Y. Suzuki: Novel microcantilever for scanning thermal imaging microscopy, Jpn. J. Appl. Phys. 35, L352–L354 (1996) CrossRefADSGoogle Scholar
  68. G. Mills, H. Zhou, A. Midha, L. Donaldson, J. M. R. Weaver: Scanning thermal microscopy using batch fabricated thermocouple probes, Appl. Phys. Lett. 72, 2900–2902 (1998) CrossRefADSGoogle Scholar
  69. O. Nakabeppu, M. Chandrachood, Y. Wu, J. Lai, A. Majumdar: Scanning thermal imaging microscopy by using composite cantilever probes, Appl. Phys. Lett. 66, 694–696 (1995) CrossRefADSGoogle Scholar
  70. M. Igeta, T. Inoue, J. Varesi, A. Majumdar: Thermal expansion and temperature measurement in a microscopic scale by using the atomic force microscope, JSME Int. J. B 42 (1999) Google Scholar
  71. M. Lederman, D. Richardson, H. C. Tong: Thermal microscopy of spin-valve and magnetoresistive devices, IEEE Trans. Mag. 33, 2923–2925 (1997) CrossRefADSGoogle Scholar
  72. G. Mills, J. M. R. Weaver, G. Harris, W. Chen, J. Carrejo, L. Johnson, B. Rogers: Detection of subsurface voids using scanning thermal microscopy, Ultramicrosc. 80, 7–11 (1999) CrossRefGoogle Scholar
  73. I. W. Rangelow, T. Gotszalk, N. Abedinov, P. Grabiec, K. Edinger: Thermal nano-probe, Microelectron. Eng. 57–58, 737–748 (2001) CrossRefGoogle Scholar
  74. T. Gotszalk, P. Grabiec, I. W. Rangelow: Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy, Ultramicrosc. 97, 385–389 (2003) CrossRefGoogle Scholar
  75. T. Ivanov, T. Gotszalk, P. Grabiec, E. Tomerov, I. W. Rangelow: Thermally driven micromechanical beam with piezoresistive deflection readout, Microelectron. Eng. 67–68, 550–556 (2003) CrossRefGoogle Scholar
  76. R. B. Dinwiddie, R. J. Pylkki, P. E. West: Thermal conductivity contrast imaging with a scanning thermal microscope, in T. W. Tong (Ed.): Thermal Conductivity, vol. 22 (Technomic Publishing, Lancaster 1994) pp. 668–677 Google Scholar
  77. S. Gom`es: Contribution th'eorique et exp'erimentale `a la microscopie thermique `a sonde locale: Calibration d'une pointe thermor'esistive, analyse des divers couplages thermiques, Ph.D. thesis, University of Reims, France (1999) Google Scholar
  78. G. B. M. Fiege, W. Schade, M. Palaniappan, V. Ng, J. C. H. Phang, L. J. Balk: Front- and backside investigations of thermal and electronic properties of semiconducting devices, Microelectron. Reliab. 39, 937–940 (1999) CrossRefGoogle Scholar
  79. H. M. Pollock, A. Hammiche: Micro-thermal analysis: Technique and applications, J. Phys. D: Appl. Phys. 32, L13–L17 (2001) Google Scholar
  80. S. Gom`es, N. Trannoy, P. Grossel, F. Depasse, C. Bainier, D. Charraut: D.C. scanning thermal microscopy: Characterisation and interpretation of the measurement, Int. J. Therm. Sci. 40, 949–958 (2001) CrossRefGoogle Scholar
  81. K. Luo, Z. Shi, J. Varesi, A. Majumdar: Sensor nanofabrication, performance and conduction mechanisms in scanning thermal microscopy, J. Vac. Sci. Technol. B 15-2, 1, 349–360 (1997) CrossRefGoogle Scholar
  82. S. Lef`evre: Mod'elisation et 'elaboration des m'etrologies de microscopie thermique `a sonde locale r'esistive, Ph.D. thesis, University of Poitiers, France (2004) Google Scholar
  83. S. Gom`es, N. Trannoy, P. Grossel: D.C. thermal microscopy: Study of the thermal exchange between a probe and a sample, Meas. Sci. Technol. 10, 805–811 (1999) CrossRefADSGoogle Scholar
  84. L. Shi, A. Majumdar: Thermal transport mechanism at nanoscale point contacts, J. Heat Transfer 124, 329–337 (2002) CrossRefGoogle Scholar
  85. A. Hammiche, H. M. Pollock, M. Song, S. Yoshimura: Subsurface imaging by scanning thermal microscopy, Meas. Sci. Technol. 7, 142–150 (1997) CrossRefADSGoogle Scholar
  86. M. Maywald, R. J. Pylkki, L. J. Balk: Imaging of local thermal and electrical conductivity with scanning force microscopy, Scanning Microsc. 8, 181–188 (1994) Google Scholar
  87. L. Zhou, G. Q. Xu, H. T. Ng, S. F. Y. Li: Scanning thermal microscope tip-induced chemical reaction on solid organometallic compound thin films, J. Vac. Sci. Technol. B 15, 1871 (1997) CrossRefGoogle Scholar
  88. L. J. Balk, M. Maywald, R. J. Pylkki: Nanoscopic detection of the thermal conductivity of compound semiconductor materials by enhanced thermal microscopy, Inst. Phys. Conf. Ser. 146, 655–658 (1995) Google Scholar
  89. F. Depasse, P. Grossel, S. Gom`es: Theory of DC and AC heat diffusion for submicro- and nanoscopies, J. Phys. D: Appl. Phys. 36, 204–210 (2003) CrossRefADSGoogle Scholar
  90. F. Ruiz, W. D. Sun, F. H. Pollak, C. Venkatraman: Determination of the thermal conductivity of diamond-like nanocomposite films using a scanning thermal microscope, Appl. Phys. Lett. 73, 1802–1804 (1998) CrossRefADSGoogle Scholar
  91. J. P. Bardon: La mesure des temp'eratures de surface par contact. Erreurs li'ees aux transferts de chaleur parasites, Rev. Gen. Therm. 170, 123–135 (1976) Google Scholar
  92. V. V. Gorbunov, N. Fuchigami, J. L. Hazel, V. V. Tsukruk: Probing surface microthermal properties by scanning thermal microscopy, Langmuir 15, 8340–8343 (1999) CrossRefGoogle Scholar
  93. S. Callard, G. Tallarida, A. Borghesi, L. Zanotti: Thermal conductivity of 2 films by scanning thermal microscopy, J. Non-Cryst. Solids 245, 203–209 (1999) CrossRefADSGoogle Scholar
  94. S. Lef`evre, S. Volz, J. B. Saulnier, C. Fuentes, N. Trannoy: Thermal conductivity calibration for hot wire based DC scanning thermal microscope, Rev. Sci. Instrum. 74, 2418–2423 (2003) CrossRefADSGoogle Scholar
  95. A. Majumdar: Scanning thermal microscopy, Annu. Rev. Sci. 29, 505–585 (1999) CrossRefADSGoogle Scholar
  96. M. Maywald, R. J. Pylkki, F. J. Reineke, L. J. Balk: Modulated thermal profiling on devices, Inst. Phys. Conf. Ser. 146, 655–658 (1995) Google Scholar
  97. D. G. Cahill: Thermal conductivity measurement from 30 to 750: The 3ωmethod, Rev. Sci. Instrum. 61, 802–806 (1990) CrossRefADSGoogle Scholar
  98. S. Lef`evre, J. B. Saulnier, C. Fuentes et, S. Volz: J. Superlat. Microstruct. 35, 283–288 (2004) CrossRefADSGoogle Scholar
  99. G. B. M. Fiege, A. Altes, R. Heiderhoff, L. J. Balk: Quantitative thermal conductivity with nanometre resolution, J. Phys. D: Appl. Phys. 32, L13–L17 (1999) CrossRefADSGoogle Scholar
  100. S. Gom`es, F. Depasse, N. Trannoy, P. Grossel: A.C. scanning thermal microscopy: Tip–sample interaction and buried defect modelling, Int J. Therm. Sci. 39, 526–531 (2000) CrossRefGoogle Scholar
  101. F. Depasse, P. Grossel, N. Trannoy: Probe temperature and output voltage calculation for the SThM in AC mode, Superlat. Microstruct. 35, 269–282 (2004) CrossRefADSGoogle Scholar
  102. F. A. Guo, N. Trannoy, J. Lu: Analysis of thermal properties by scanning thermal microscopy in nanocrystallized iron surface induced by ultrasonic shot peening, Mater. Sci. Eng. A 369, 36–42 (2004) CrossRefGoogle Scholar
  103. F. A. Guo, K. Y. Zhu, N. Trannoy, J. Lu: Examination of thermal properties by scanning thermal microscopy in ultrafine-grained pure titanium surface layer induced by ultrasonic shot peening, Thermochimica Acta 419, 239–246 (2004) CrossRefGoogle Scholar
  104. V. M. Asnin, F. H. Pollack, J. Ramer, M. Schurman, I. Ferguson: High spatial resolution thermal conductivity of lateral epitaxial overgrown GaN/sapphire (0001) using a scanning thermal microscope, Appl. Phys. Lett. 75, 1240–1242 (1999) CrossRefADSGoogle Scholar
  105. A. Hammiche, D. J. Hourston, H. M. Pollock, M. Reading, M. Song: Scanning thermal microscopy: Subsurface imaging, thermal mapping of polymer blends and localized calorimetry, J. Vac. Sci. Technol. B 14, 1486–1491 (1996) CrossRefGoogle Scholar
  106. A. Hammiche, M. Reading, H. M. Pollock, M. Song, D. J. Hourston: Localized thermal analysis using a miniaturized resistive probe, Rev. Sci. Intrum. 67, 4268–4274 (1996) CrossRefADSGoogle Scholar
  107. H. M. Pollock, A. Hammiche, M. Song, D. J. Hourston, M. Reading: Interfaces in polymeric systems as studied by CASM. A new combination of localised calorimetric analysis with scanning microscopy, J. Adhesion 67, 217–234 (1996) CrossRefGoogle Scholar
  108. J. Altet, S. Dilhaire, S. Volz, J.-M. Rampnoux, A. Rubio, S. Grauby, L. D. P. Lopez, W. Claeys, J. B. Saulnier: Four different approaches of IC surface temperature: Application to thermal testing, Microelectron. J. 33, 689–696 (2002) CrossRefGoogle Scholar
  109. S. Gom`es, D. Ziane: Investigation of the electrical degradation of a metal-oxide-silicon capacitor by scanning thermal microscopy, Solid State Electron. 47, 919–922 (2003) CrossRefADSGoogle Scholar
  110. L. D. Patino-Lopez, S. Grauby, S. Dilhaire, M. A. Salhi, W. Clayes, S. Lef`evre, S. Volz: Characterization of the thermal behaviour of PN thermoelectric couples by scanning thermal microscope, Microelectronics I.35, 797–803 (2004) CrossRefGoogle Scholar
  111. A. Hammiche, H. M. Pollock, M. Reading, M. Claybourn, P. H. Turner, K. Jewkes: Photothermal FT-IR spectroscopy: A step towards FT-IR microscopy at a resolution better than the diffraction limit, Appl. Spectrosc. 53, 810–815 (1999) CrossRefADSGoogle Scholar

Authors and Affiliations

  • Bernard Cretin
    • 1
  • Séverine Gomès
    • 2
  • Nathalie Trannoy
    • 3
  • Pascal Vairac
    • 1
  1. 1.Department LPMOFEMTO-ST InstituteBesançon Cedex
  2. 2.UMR 5008, INSA de LyonCentre de Thermique de LyonVilleurbanne Cedex
  3. 3.UTAP/ Laboratoire d’Energétique et d’Optique, EA 3802, Université de ReimsReims Cedex

Personalised recommendations