Advertisement

Molecular Dynamics

  • Patrice Chantrenne
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 107)

Abstract

The aim in this Chapter is to show how molecular dynamics can be used to study conductive heat transfer in matter in terms of an atomic description of that matter. Molecular dynamics can only be used to study heat transfer by phonons, i.e., vibrations of the atomic lattice. It therefore only applies to dielectric materials, i.e., electrical insulators and semiconductors, in which the concentration of free electrons in the lattice is low enough to ensure that heat transfer by electrons is negligible compared with heat transfer by phonons.

There will be two applications here:
  • Prediction of the thermal conductivity of macroscopic materials on the basis of a description of their atomic structure: crystals, amorphous materials, with and without defects (voids, substitution defects, interstitial defects, dislocations, and grain boundaries), multilayer composite materials, superlattices, and so on.

  • Prediction of the thermal conductivity of nanostructures: nanoparticles, nanowires, nanofilms, nanotubes, and so on.

Since molecular dynamics is not widely used in the heat transfer community, the first part of this Chapter presents the basic principles and implementation of the technique. Section 2 discusses the methods most widely used to calculate the thermal conductivity with the help of molecular dynamics simulations. The thermal conductivity can be calculated on the basis of behavioural models. We shall see in Sect. 3 that molecular dynamics can be used as a tool for determining the vibrational properties of the materials required in these models.

Keywords

65.80.+n 82.53.Mj 81.16.-c 44.10.+i 44.40.+a 82.80.Kq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. P. Allen, D. J. Tildesley: Computer Simulation of Liquids (Oxford University Press, New York 1997) zbMATHGoogle Scholar
  2. D. Frenkel, S. Berend: Understanding Molecular Simulation (Academic Press, San Diego 1996) zbMATHGoogle Scholar
  3. D. C. Rapaport: The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge 1995) zbMATHGoogle Scholar
  4. R. J. Sadus: Molecular Simulation of Fluids (Elsevier Science, Amsterdam 1999) Google Scholar
  5. D. J. Oh, R. A. Johnson: J. Mater. Res. 3, 471–478 (1988) ADSCrossRefGoogle Scholar
  6. F. Ercolessi, M. Parrinello, E. Tosatti: Phil. Mag. A 58, 213–226 (1988) ADSCrossRefGoogle Scholar
  7. F. H. Stillinger, T. A. Weber: Phys. Rev. B 31, 5262–5271 (1985) CrossRefADSGoogle Scholar
  8. R. Biswas, D. R. Hamann: Phys. Rev. Lett. 55, 2001–2004 (1985) CrossRefADSGoogle Scholar
  9. D. W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458–9471 (1990) CrossRefADSGoogle Scholar
  10. J. Tersoff: Phys. Rev. B 37, 6991–7000 (1988) CrossRefADSGoogle Scholar
  11. F. Ercolessi, J. B. Adams: Europhys. Lett. 26, 583–588 (1994) ADSCrossRefGoogle Scholar
  12. M. Gastreich, J. Gale, C. Marian: Phys. Rev. B 68, 094110 (2003) CrossRefADSGoogle Scholar
  13. P. Chantrenne, S. Volz: Techniques de l'Ing'enieur, article BE 8290 (2002) Google Scholar
  14. C. Kittel: Introduction to Solid State Physics (Wiley, New York 1996) zbMATHGoogle Scholar
  15. N. W. Ashcroft, N. D. Mermin: Solid State Physics (Harcourt College Publishers, Fort Worth 1976) Google Scholar
  16. S. Chapman, T. G. Cowling: The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge University Press, Cambridge 1970) Google Scholar
  17. B. Diu, C. Guthmann, D. Lederer, B. Roulet: El'ements de physique statistique (Hermann, Paris 1989) Google Scholar
  18. J. R. Lukes, D. Y. Li, X. G. Liang, C. L. Tien: J. Heat Trans. 122, 536 (2000) CrossRefGoogle Scholar
  19. R. Zwanzig: Ann. Rev. Phys. Chem. 16, 67 (1964) CrossRefADSGoogle Scholar
  20. A. J. C. Ladd, B. Moran, W. G. Hoover: Phys. Rev. B 34, 5058 (1996) CrossRefADSGoogle Scholar
  21. R. Kubo, M. Toda, N. Hashitsume: Statistical Physics II, vol. 31, Springer Series in Solid State Sciences (Springer, Berlin 1991) zbMATHGoogle Scholar
  22. S. Volz, P. Chantrenne: Techniques de l'Ing'enieur, BE 8 291 p. 1 (2002) Google Scholar
  23. F. Müller-Plathe: J. Chem. Phys. 106, 6082 (1997) CrossRefADSGoogle Scholar
  24. P. Jund, R. Jullien: Phys. Rev. B. 59, 13707–13711 (1999) CrossRefADSGoogle Scholar
  25. T. Ikeshoji, B. Hafskjold: Mol. Phys. 81, 251–261 (1994) CrossRefADSGoogle Scholar
  26. S. Maruyama: Physica B 323, 193–195 (2002) CrossRefADSGoogle Scholar
  27. B. C. Daly, H. J. Maris: Physica B 316–317, 247–249 (2002) CrossRefGoogle Scholar
  28. J. L. Barrat, F. Chiaruttini: Molecular Physics (2003) URL: http://xxx.lpthe.jussieu.fr/abs/cond-mat/0209 607 in press Google Scholar
  29. C. Olischlger, J. C. Schön: Phys. Rev. B 59, 4125–4133 (1999) CrossRefADSGoogle Scholar
  30. P. Chantrenne, J. L. Barrat: Eurotherm Seminar No. 75 on Microscale Heat Transfer (Reims, France 2003) Google Scholar
  31. D. J. Evans: Phys. Lett. A 91, 457 (1982) CrossRefADSGoogle Scholar
  32. D. J. Evans: Phys. Rev. A 34, 1449 (1986) CrossRefADSGoogle Scholar
  33. D. J. Evans: J. Chem. Phys. 78, 3297 (1983) CrossRefADSGoogle Scholar
  34. D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran, A. J. C. Ladd: Phys. Rev. 28, 1016 (1983) CrossRefADSGoogle Scholar
  35. I. Rosenblum, J. Adler, S. Brandon: Comput. Mater. Sci. 12, 9–25 (1998) CrossRefGoogle Scholar
  36. X. Lu, J. H. Chu: J. Appl. Phys. 83, 1219–1229 (2003) CrossRefADSGoogle Scholar
  37. J. Zou, A. Balandin: J. Appl. Phys. 89, 2932–2938 (2001) CrossRefADSGoogle Scholar
  38. R. Berman, F. E. Simon, J. M. Ziman: Proc. Roy. Soc. (London) A 220, 171 (1953) ADSCrossRefGoogle Scholar
  39. M. G. Holland: Phys. Rev. Lett. 132, 2461–2471 (1963) ADSGoogle Scholar
  40. H. B. G. Casimir: Physica 5, 595 (1938) Google Scholar
  41. P. G. Klemens: Solid State Physics, vol. 7 (Academic Press, New York 1963) Google Scholar
  42. P. G. Klemens: Proc. Roy. Soc. (London) A 208, 108 (1951) zbMATHADSCrossRefGoogle Scholar
  43. C. Herring: Phys. Rev. 95, 954 (1954) zbMATHCrossRefADSGoogle Scholar
  44. J. Callaway: Phys. Rev. 113, 1046 (1959) zbMATHCrossRefADSGoogle Scholar
  45. P. G. Klemens: Solid State Physics (Academic Press, New York 1958) Google Scholar
  46. P. G. Klemens: Proc. Phys. Soc. (London) A 48, 1113 (1955) CrossRefADSGoogle Scholar
  47. M. W. Ackerman, P. G. Klemens: Phys. Rev. B Solid State, Third Series 3, 3 (1971) Google Scholar
  48. M. W. Ackerman: Phys. Rev. B 5, 5 (1972) CrossRefGoogle Scholar
  49. A. C. Anderson, M. E. Malinowski: Phys. Rev. B 5, 3199 (1972) CrossRefADSGoogle Scholar
  50. D. Kotchetkov, J. Zou, A. A. Balandin, D. I. Florescu, F. H. Pollock: Appl. Phys. Lett. 79, 4316–4318 (2001) CrossRefADSGoogle Scholar
  51. P. M. Chaikin, T. C. Lubensky: Principles of Condensed Matter Physics (Cambridge University Press, Cambridge 1995) Google Scholar
  52. D. J. Quesnel, D. S. Rimai, L. P. DeMejo: Phys. Rev. B 48, 6795–6807 (1993) CrossRefADSGoogle Scholar
  53. S. Motoyama, Y. Ichikawa, Y. Hiwatari, A. Oe: Phys. Rev. B 60, 292–298 (1999) CrossRefADSGoogle Scholar

Authors and Affiliations

  • Patrice Chantrenne
    • 1
  1. 1.Centre de Thermique de Lyon, UMR 5008 CNRS/INSA/UCBLInstitut National des Sciences Appliquées de LyonVilleurbanne Cedex

Personalised recommendations