Advertisement

Hybrid Techniquesand Multipurpose Microscopes

  • Bernard Cretin
  • Pascal Vairac
Chapter
  • 1.4k Downloads
Part of the Topics in Applied Physics book series (TAP, volume 107)

Abstract

In this Chapter we discuss microscopes able to achieve submicron resolution using thermoelastic effects. Section 1 reviews the physical effects that can be exploited, while Sect. 2 uses a 3D model to illustrate the main features of this kind of microscopy, describing the phenomenon of super-resolution common to all near-field imaging techniques. Section 3 then discusses several hybrid microscopes and Sect. 4 describes the prospects for a technique that is still in its infancy.

Keywords

65.80.+n 82.53.Mj 81.16.-c 44.10.+i 44.40.+a 82.80.Kq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. P. Almond, P. M. Patel: Photothermal Science and Techniques (Chapman & Hall, London 1996) Google Scholar
  2. L. Thiery, N. Marini, J. P. Prenel, M. Spajer, C. Bainier, D. Courjon: Temperature profile measurements of near-field optical microscopy fiber tips by means of sub-micronic thermocouple, Int. J. Therm. Sci. 39, 519–525 (2000) CrossRefGoogle Scholar
  3. D. Royer, E. Dieulesaint, T. Valero: Pyroelectric non-destructive testing of BAW transducers, Ultrasonics Symposium Proceedings pp. 908–911 (1984) Google Scholar
  4. A. Rosencwaig: Photoacoustic spectroscopy of solids, Opt. Commun. 7, 305–308 (1973) CrossRefADSGoogle Scholar
  5. A. Rosencwaig, A. Gersho: Theory of the photoacoustic effect with solids, J. Appl. Phys. 47, 64–69 (1976) CrossRefADSGoogle Scholar
  6. G. Busse, A. Rosencwaig: Subsurface imaging with photoacoustics, Appl. Phys. Lett. 36, 815–816 (1980) CrossRefADSGoogle Scholar
  7. R. Santos, L. C. Miranda: Theory of photothermal radiometry with solids, J. Appl. Phys. 52, 4194–4198 (1981) CrossRefADSGoogle Scholar
  8. S. J. Sheard, R. K. Appel, M. G. Somekh: Photothermal radiometric imaging of semiconductors, Electron. Lett. 23, 227–228 (1987) CrossRefGoogle Scholar
  9. D. Maillet, J. C. Batsale, A. Bendada, A. Degiovanni: M'ethodes int'egrales et contr^ole non-destructif par thermographie infrarouge stimul'ee, Revue G'en'erale de Thermique 35, 14S–27S (1996) Google Scholar
  10. A. C. Boccara, D. Fournier, J. Badoz: Thermo-optical spectroscopy: Detection by the mirage effect, Appl. Phys. Lett. 36, 130–132 (1980) CrossRefADSGoogle Scholar
  11. J. C. Murphy, L. C. Aadmot: Photothermal spectroscopy using optical beam probing: Mirage effect, J. Appl. Phys. 51, 4580–4588 (1980) CrossRefADSGoogle Scholar
  12. A. Salazar, A. Sanchez-Lavega, J. Fernandez: Thermal diffusivity measurements on solids using collinear mirage detection, J. Appl. Phys. 74, 1539–1547 (1993) CrossRefADSGoogle Scholar
  13. F. Lepoutre, D. Fournier, A. C. Boccara: Nondestructive control of weldings using mirage detection, J. Appl. Phys. 57, 1009–1015 (1985) CrossRefADSGoogle Scholar
  14. J. Opsal, M. W. Taylor, W. L. Smith, A. Rosencwaig: Temporal behavior of modulated optical reflectance in silicon, J. Appl. Phys. 61, 240–248 (1987) CrossRefADSGoogle Scholar
  15. A. Mandelis, J. F. Power: Frequency-modulated impulse response photothermal detection through optical reflectance. 1: Theory, Appl. Opt. 27, 3397–3417 (1988) ADSCrossRefGoogle Scholar
  16. F. Lepoutre, P. Forge, F. C. Chen, D. Balageas: Micronic thermal characterizations of cracks and interfaces in composite materials by photoreflectance, La Recherche A'erospatiale 1, 39–52 (1994) Google Scholar
  17. G. Rousset, L. Bertrand, P. Cielo: A pulsed thermoelastic analysis of photothermal surface displacements in layered materials, J. Appl. Phys. 57, 4396–4405 (1985) CrossRefADSGoogle Scholar
  18. J. C. Murphy, J. W. Maclachlan, L. C. Aamodt: Imaging contrast processes in thermal and thermoacoustic imaging, IEEE Trans. Ultrason., Ferroelec., Freq. Cont. 33, 529–541 (1986) ADSCrossRefGoogle Scholar
  19. B. Cretin, D. Hauden: Thermoacoustic microscopy using optical excitation and detection, SPIE Proc. 809, 64–69 (1987) ADSGoogle Scholar
  20. R. M. White: Generation of elastic waves by transient surface heating, J. Appl. Phys. 34, 3559–3567 (1963) CrossRefADSGoogle Scholar
  21. A. Rosencwaig, A. Gersho: Theory of the photoacoustic effect with solids, J. Appl. Phys. 47, 64–69 (1976) CrossRefADSGoogle Scholar
  22. G. C. Wetsel: Photothermal generation of thermoelastic waves in composite media, IEEE Trans. Ultrason., Ferroelec., Freq. Cont. 33, 450–461 (1986) CrossRefGoogle Scholar
  23. W. Jackson, N. M. Amer: Piezoelectric photoacoustic detection: Theory and experiment, J. Appl. Phys. 51, 3343–3353 (1980) CrossRefADSGoogle Scholar
  24. H. Delavault: Transformation de Hankel en coordonn'ees cylindriques, Publications scientifiques et techniques 71 (1957) Google Scholar
  25. C. K. Youngdahl: On the completeness of a set of stress functions appropriate to the solution of elasticity problems, Int. J. Eng. Sci. 7, 61–79 (1969) zbMATHMathSciNetCrossRefGoogle Scholar
  26. B. Cretin, N. Daher, B. Cavallier: Thermoelastic modeling: Application to super-resolution in photothermal and thermoelastic microscopy, in Proceedings of SPIE Optical Inspection and Micromeasurements II, SPIE 3098 (1997) pp. 466–475 Google Scholar
  27. B. Cretin: Super-resolution in photothermal and thermoelastic microscopies: Extension of the near-field concept, Revue G'en'erale de Thermique 37, 556–564 (1998) CrossRefGoogle Scholar
  28. A. Rosencwaig: High resolution photoacoustic thermal-wave microscopy, Appl. Phys. Lett. 36, 725–727 (1980) CrossRefADSGoogle Scholar
  29. F. A. McDonald, G. C. Wetsel, C. G. Clark: Effects of frequency on definition and resolution in photothermal imaging of subsurface structure, Ultrasonics Symposium Proc. pp. 672–676 (1983) Google Scholar
  30. L. J. Inglehart, K. R. Grice, L. D. Favro, P. K. Kuo: Spatial resolution of thermal wave microscopes, Appl. Phys. Lett. 43, 446–448 (1983) CrossRefADSGoogle Scholar
  31. P. Vairac, B. Cretin: Heterodyne laser probe using a double pass, Opt. Commun. 132, 19–23 (1996) CrossRefADSGoogle Scholar
  32. J. C. Murphy, J. W. Maclachlan, L. C. Aamodt: Imaging contrast processes in thermal and thermoacoustic imaging, IEEE Trans. Ultrason., Ferroelec., Freq. Cont. 33, 529–541 (1986) ADSCrossRefGoogle Scholar
  33. B. Cretin, J. Takadoum, A. Mahmoud, D. Hauden: Metallurgical applications of the thermoelastic microscope, Thin Solid Films 209, 127–131 (1992) CrossRefADSGoogle Scholar
  34. U. Durig, D. W. Pohl, F. Rohner: Near-field optical-scanning microscopy, J. Appl. Phys. 59, 3318–3327 (1986) CrossRefADSGoogle Scholar
  35. D. Courjon, K. Sarayeddine, M. Spajer: Scanning tunneling optical microscopy, Opt. Commun. 71, 23–28 (1989) CrossRefADSGoogle Scholar
  36. D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani: On the heating of the fiber tip in a near-field scanning optical microscope, Appl. Phys. Lett. 67, 2771–2773 (1995) CrossRefADSGoogle Scholar
  37. K. E. Goodson, M. Asheghi: Near-field optical thermometry, Microscale Thermophys. Eng. 1, 225–235 (1997) CrossRefGoogle Scholar
  38. B. Cavallier: Microscopies photothermiques et thermo'elastique conventionnelles et `a sonde locale: Th'eorie et exp'erimentation, Ph.D. thesis, University of Franche-Comt'e, France (2000) Google Scholar
  39. J. Varesi, A. Majumdar: Scanning Joule expansion microscopy at nanometer scales, Appl. Phys. Lett. 72, 37–39 (1998) CrossRefADSGoogle Scholar
  40. M. Cannaerts, D. Buntinx, A. Volodin, C. Van Haesendonck: Calibration of a scanning Joule expansion microscope (SJEM), Appl. Phys. A 72, 67–70 (2001) ADSCrossRefGoogle Scholar
  41. J. Pelzl, J. Bolte, F. Niebisch, D. Dietzel, H. H. Althaus: New developments in thermal wave microscopy, Anal. Sci. 17, s53–s56 (2001) Special Issue Google Scholar
  42. A. Hammiche, D. M. Price, E. Dupas, G. Mills, A. Kulik, M. Reading, J. M. R. Weaver, H. M. Pollock: Two adaptations of thermomechanical modulation for microscopy: SThEM and dynamic L-TMA (scanning thermal expansion microscopy and dynamic localised thermomechanical analysis), J. Microsc. 199, 180–190 (2000) CrossRefGoogle Scholar
  43. N. Trannoy, P. Grossel: Photothermal effects induced by laser excitation in scanning tunneling microscope, Int. J. Thermal Sci. 39, 532–536 (2000) CrossRefGoogle Scholar
  44. R. Patois: M'ethodes optiques et acoustiques pour les microscopies thermiques et thermo-'elastiques aux 'echelles micro- et nanom'etriques, Ph.D. thesis, University of Franche-Comt'e, France (2003) Google Scholar
  45. G. E. Moore: Cramming more components onto integrated circuits, Electron. 38, 114–117 (1965) Google Scholar
  46. H. J. Mamin, D. Rugar: Thermomechanical writing with an atomic force microscope tip, Appl. Phys. Lett. 61, 1003–1005 (1992) CrossRefADSGoogle Scholar
  47. B. W. Chui, T. D. Stowe, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, B. D. Terris, R. P. Ried, D. Rugar: Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density afm thermomechanical data storage, IEEE J. Microelectromech. Syst. 7, 69–78 (1998) CrossRefGoogle Scholar
  48. R. Held, T. Heinzel, A. P. Studerus, K. Ensslin, M. Holland: Semiconductor quantum point contact fabricated by lithography with an atomic force microscope, Appl. Phys. Lett. 71, 2689–2691 (1997) CrossRefADSGoogle Scholar
  49. D. M. Eigler, E. K. Schweizer: Positioning single atoms with a scanning tunnelling microscope, Nature 344, 524–526 (1990) CrossRefADSGoogle Scholar
  50. E. S. Snow, P. M. Campbell, F. K. Perkins: Nanofabrication with proximal probes, Proc. of the IEEE 85, 601–611 (1997) CrossRefGoogle Scholar
  51. C. F. Quate: Manipulation and modification of nanometer scale objects with the STM, in L. Esaki (Ed.): Highlights in Condensed Matter Physics and Future Prospects (Plenum, New York 1991) pp. 573–630 Google Scholar
  52. R. Leach, J. Haycocks, K. Jackson, A. Lewis, S. Oldfield, A. Yacoot: Advances in traceable nanometrology at the National Physical Laboratory, Nanotechnol. 12, R1–R6 (2001) CrossRefADSGoogle Scholar
  53. O. Jusko, X. Zhao, H. Wolf, G. Wilkening: Design and three-dimensional calibration of a measuring scanning tunneling microscope for metrological applications, Rev. Sci. Instrum. 65, 2514–2518 (1994) CrossRefADSGoogle Scholar
  54. R. Berger, C. Gerber, H. P. Lang, J. K. Gimzewski: Micromechanics: A toolbox for femtoscale science: Towards a laboratory on a tip, Microelectron. Eng. 35, 373–379 (1996) (International Conference on Micro- and Nanofabrication, Glasgow, 1996) CrossRefGoogle Scholar
  55. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C. H. Chang: Near-field magneto-optics and high density data storage, Appl. Phys. Lett. 61, 142–144 (1992) CrossRefADSGoogle Scholar
  56. M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Haeberle, H. Rohrer, H. Rothuizer, P. Vettiger: Microfabrication and parallel operation of 55 AFM cantilever arrays for data storage and imaging, presented at MEMS 98, Heidelberg (1998) Google Scholar
  57. B. W. Chui, H. J. Mamin, B. D. Terris, T. D. Stowe, D. Rugar, T. W. Kenny: Low-stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope, Appl. Phys. Lett. 69, 2767–2769 (1996) CrossRefADSGoogle Scholar

Authors and Affiliations

  • Bernard Cretin
    • 1
  • Pascal Vairac
    • 1
  1. 1.Department LPMOFEMTO-ST InstituteBesançon Cedex

Personalised recommendations