Advertisement

Optical Techniques for Local Measurement

  • Stefan Dilhaire
  • Danièle Fournier
  • Gilles Tessier
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 107)

Abstract

Optical measurement techniques are well suited to many heat transfer problems, insofar as they are non-contact and generally non-invasive. Far-field measurements of infrared thermal emission were for a long time the predominant method. But today these techniques have reached their limits: the spatial resolution is not adequate for micro and nanoheat transfer analysis.

In this Chapter, we shall review the main optical techniques devised recently to overcome these limitations. A great many of these techniques operate in a modulated regime, taking advantage of the excellent signal-to-noise ratio provided by lock-in detection, but also exploiting the spatial confinement of the modulated part of the heat obtained in the alternating regime.

Keywords

65.80.+n 82.53.Mj 81.16.-c 44.10.+i 44.40.+a 82.80.Kq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Dilhaire: D'eveloppement d'un interf'erom`etre laser tr`es haute r'esolution pour la caract'erisation de composants micro'electroniques, Ph.D. thesis, University of Bordeaux, France (1994) Google Scholar
  2. A. Mandelis: Theory of photothermal wave diffraction and interference in condensed media, J. Opt. Soc. Am. A: Optics Image Science and Vision 6, 298–308 (1989) ADSCrossRefGoogle Scholar
  3. J. Opsal, A. Rosencwaig: Thermal wave depth profiling: Theory, J. Appl. Phys. 53, 4240–4246 (1982) CrossRefADSGoogle Scholar
  4. S. K. Lau, D. P. Almond, P. M. Patel: Transient thermal wave techniques for the evaluation of surface coatings, J. Phys. D: Appl. Phys. 24, 428–436 (1991) CrossRefADSGoogle Scholar
  5. H. S. Carslaw, J. C. Jaeger: Conduction of Heat in Solids (Oxford University Press, Oxford 1993) Google Scholar
  6. W. J. Parker, R. J. Jenkins, G. L. Abbott, C. P. Butler: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys. 32, 1679 (1961) CrossRefADSGoogle Scholar
  7. P. Cielo, L. A. Utracki, M. Lamontagne: Thermal diffusivity measurements by the converging-thermal-wave technique, Canadian J. Phys. 64, 1172–1177 (1986) ADSGoogle Scholar
  8. F. Enguehard, D. Boscher, A. Deom, D. Balageas: Measurement of the thermal radial diffusivity of anisotropic materials by the converging thermal wave technique, Mater. Sci. Eng. B: Solid State Materials for Advanced Technology 5, 127–134 (1990) ADSGoogle Scholar
  9. O. W. Kading, H. Skurk, K. E. Goodson: Thermal conduction in metallized silicon dioxide layers on silicon, Appl. Phys. Lett. 65, 1629–1631 (1994) CrossRefADSGoogle Scholar
  10. A. Mandelis, P. Hess: Progress in photothermal and photoacoustic science and technology. Vol. 6, in Semiconductors and Electronic Materials, vol. PM74 (SPIE Press 1994) Google Scholar
  11. F. Formanek, Y. De Wilde, L. Aigouy, W. K. Kwok, L. Paulius, Y. Chen: Nanometer-scale probing of optical and thermal near-fields with an apertureless NSOM, Superlatt. Microstruct. 35, 315–323 (2004) CrossRefADSGoogle Scholar
  12. G. Abstreiter: Micro-Raman spectroscopy for characterization of semiconductor devices, Appl. Surf. Sci. 50, 73–78 (1991) CrossRefADSGoogle Scholar
  13. L. Pavesi, M. Guzzi: Photoluminescence of 1-alloys, J. Appl. Phys. 75, 4779–4842 (1994) CrossRefADSGoogle Scholar
  14. M. Cazzanelli, C. Vinegoni, L. Pavesi: Temperature dependence of the photoluminescence of all-porous-silicon optical microcavities, J. Appl. Phys. 85, 1760–1764 (1999) CrossRefADSGoogle Scholar
  15. E. D. Palik: Handbook of Optical Constants, J. Opt. Soc. Am. A: Optics Image Science and Vision 1 (1984) pp. 1297–1297 Google Scholar
  16. G. Tessier, S. Hole, D. Fournier: Ultraviolet illumination thermoreflectance for the temperature mapping of integrated circuits, Opt. Lett. 28, 875–877 (2003) ADSCrossRefGoogle Scholar
  17. W. J. Scouler: Temperature-modulated reflectance of gold from 2 to 10, Phys. Rev. Lett. 18, 445 (1967) CrossRefADSGoogle Scholar
  18. R. Rosei, D. W. Lynch: Thermomodulation spectra of , , and , Phys. Rev. B 5, 3883 (1972) CrossRefADSGoogle Scholar
  19. G. Tessier, G. Jerosolimski, S. Hole, D. Fournier, C. Filloy: Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials, Rev. Sci. Instrum. 74, 495–499 (2003) CrossRefADSGoogle Scholar
  20. R. Abid, F. Miserey, F. Z. Mezroua: Temperature effect on oxidized silicon reflectivity: Experimental determination of the relative sensitivity; Application to temperature non-contact measurements on the surface of a GTO thyristor in commutation, J. de Phys. III 6, 279–300 (1996) CrossRefADSGoogle Scholar
  21. V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, W. Claeys: Laser beam thermography of circuits in the particular case of passivated semiconductors, Microelectron. Eng. 31, 291–298 (1996) CrossRefGoogle Scholar
  22. G. Tessier, S. Hole, D. Fournier: Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths, Appl. Phys. Lett. 78, 2267–2269 (2001) CrossRefADSGoogle Scholar
  23. O. B. Wright, R. L. Voti, O. Matsuda, M. C. Larciprete, C. Sibilia, M. Bertolotti: Photothermal probing of inhomogeneously modulated transparent thin films, J. Appl. Phys. 91, 5002–5009 (2002) CrossRefADSGoogle Scholar
  24. S. Dilhaire, S. Grauby, W. Claeys: Calibration procedure for temperature measurements by thermoreflectance under high magnification conditions, Appl. Phys. Lett. 84, 822–824 (2004) CrossRefADSGoogle Scholar
  25. G. Tessier, A. Salhi, Y. Rouillard, F. Genty, J.-P. Roger, D. Fournier: Quantitative thermal imaging of GaInAsSb/AlGaAsSb laser diodes by thermoreflectance, presented at the ICPPP 13, Rio de Janeiro (2004) Google Scholar
  26. A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg: Detection of thermal waves through optical reflectance, Appl. Phys. Lett. 46, 1013–1015 (1985) CrossRefADSGoogle Scholar
  27. L. Pottier: Micrometer scale visualization of thermal waves by photoreflectance microscopy, Appl. Phys. Lett. 64, 1618–1619 (1994) CrossRefADSGoogle Scholar
  28. T. Velinov: On analysis of signals from a photothermal microscope, Meas. Sci. Technol. 6, 28–32 (1995) CrossRefADSGoogle Scholar
  29. P. Gleyzes, F. Guernet, A. C. Boccara: Picometric profilometry 2. Multidetector approach and multiplexed lock-in detection, J. Opt. 26, 251–265 (1995) CrossRefADSGoogle Scholar
  30. C. Filloy, G. Tessier, S. Hole, G. Jerosolimski, D. Fournier: The contribution of thermoreflectance to high resolution thermal mapping, Sensor Rev. 23, 35–39 (2003) CrossRefGoogle Scholar
  31. J. P. Monchalin: Heterodyne interferometric laser probe to measure continuous ultrasonic displacements, Rev. Sci. Instrum. 56, 543–546 (1985) CrossRefADSGoogle Scholar
  32. D. Royer, E. Dieulesaint: Optical probing of the mechanical impulse response of a transducer, Appl. Phys. Lett. 49, 1056–1058 (1986) CrossRefADSGoogle Scholar
  33. D. Royer, E. Dieulesaint, P. Leclaire: Remote sensing of the thickness of hollow cylinders from optical excitation and detection of lamb waves, in (IEEE Ultrasonics symposium, Montreal 1989) Google Scholar
  34. B. Cretin, D. Hauden: Joule displacement and thermoelastic microscopies of electronic components with optical probing, presented at the ESREF, Bordeaux (1989) Google Scholar
  35. Y. Martin, E. A. Ash: Photo-displacement microscopy using a semiconductor laser, Electron. Lett. 18, 763–764 (1982) CrossRefGoogle Scholar
  36. J. E. Rothenberg: Observation of the transient expansion of heated surfaces by picosecond photothermal deflection spectroscopy, Opt. Lett. 13, 713–715 (1988) ADSCrossRefGoogle Scholar
  37. H. K. Wickramasinghe, Y. Martin, S. Ball, E. A. Ash: Thermodisplacement imaging of current in thin-film circuits, Electron. Lett. 18, 700–701 (1982) CrossRefGoogle Scholar
  38. B. Cretin, D. Hauden: Thermoacoustic scanning microscope using a laser probe, in (Ultrasonic Symposium 1984) Google Scholar
  39. B. Cretin, W. X. Xie, S. Wang, D. Hauden: Practical limitations and improvements, Opt. Commun. 65, 157–162 (1988) CrossRefADSGoogle Scholar
  40. W. Claeys, S. Dilhaire, E. Schaub: Laser probing techniques and methods for the thermal characterization of microelectronic components, in Thermal Management of Electronic Systems (Elsevier, Paris 1998) pp. 227–237 Google Scholar
  41. W. Claeys, S. Dilhaire, S. Jorez, L. D. Patino-Lopez: Laser probes for the thermal and thermomechanical characterisation of microelectronic devices, Microelectron. J. 32, 891–898 (2001) CrossRefGoogle Scholar
  42. E. Laffon, D. Dulon, C. Aurousseau, S. Dilhaire, W. Claeys: Organic material concentration in auditory outer hair cells measured by laser interferometry, Cytometry 20, 1–6 (1995) CrossRefGoogle Scholar
  43. E. Laffon, S. Dilhaire, J. L. Leveque, P. Corcuff: An improved technique for optical interferometric imaging of isolated cells, Cytometry 24, 93–96 (1996) CrossRefGoogle Scholar
  44. K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys: Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI), Microelectron. Reliab. 38, 1341–1345 (1998) CrossRefGoogle Scholar
  45. B. C. Li, L. Pottier, J. P. Roger, D. Fournier, K. Watari, K. Hirao: Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy, J. European Ceramic Soc. 19, 1631–1639 (1999) CrossRefGoogle Scholar
  46. C. Pelissonnier-Grosjean, D. Fournier, A. Thorel: Thermal resistance of grain boundary interfaces in polycrystalline aluminum nitride, J. de Phys. IV 9, 201–206 (1999) Google Scholar
  47. I. Mica, M. L. Polignano, G. Carnevale, P. Ghezzi, M. Brambilla, F. Cazzaniga, M. Martinelli, G. Pavia, E. Bonera: Crystal defects and junction properties in the evolution of device fabrication technology, J. Phys.: Condens. Matter 14, 13403–13410 (2002) CrossRefADSGoogle Scholar
  48. S. Dilhaire, S. Grauby, S. Jorez, L. D. Patino-Lopez, E. Schaub, W. Claeys: Laser diode COFD analysis by thermoreflectance microscopy, Microelectron. Reliab. 41, 1597–1601 (2001) CrossRefGoogle Scholar
  49. S. Dilhaire, S. Jorez, L. D. Patino-Lopez, W. Claeys, E. Schaub: Laser diode light efficiency determination by thermoreflectance microscopy, Microelectr. J. 32, 899–901 (2001) CrossRefGoogle Scholar
  50. J. Laconte, C. Dupont, A. Akheyar, J.-P. Raskin, D. Flandre: Symposium on Designe, Test, Integration and Packaging of MEMS and MOEMS (Cannes-Mandelieu 2002) Google Scholar
  51. T. Phan, S. Dilhaire, V. Quintard, W. Claeys, J. C. Batsale: Thermoreflectance measurements of transient temperature upon integrated circuits: Application to thermal conductivity identification, Microelectron. J. 29, 181–190 (1998) CrossRefGoogle Scholar
  52. T. Phan, S. Dilhaire, J. C. Batsale, V. Quintard, W. Claeys: Laser probing determination of the thermal conductivity of integrated circuits dielectric layers, High Temp. High Press. 29, 81–88 (1997) CrossRefGoogle Scholar
  53. M. Deschamps, O. Poncelet, S. Dilhaire, W. Claeys: Surface acoustic waves at the vacuum–thermoviscoelastic solid interface, Ultrasonics 37, 677–680 (2000) CrossRefGoogle Scholar

Authors and Affiliations

  • Stefan Dilhaire
    • 1
  • Danièle Fournier
    • 2
  • Gilles Tessier
    • 3
  1. 1.Centre de Physique Moléculaire Optique et HertzienneUniversity of BordeauxBordeaux
  2. 2.Laboratoire d’Optique Physique, Ecole Supérieure de Physique et de Chimie Industrielles de ParisUniversity of Paris VIParis
  3. 3.Laboratoire d’Optique PhysiqueEcole Supérieure de Physique et de Chimie Industrielles de ParisParis

Personalised recommendations