Skip to main content

Optical Techniques for Local Measurement

  • Chapter
  • First Online:
Microscale and Nanoscale Heat Transfer

Part of the book series: Topics in Applied Physics ((TAP,volume 107))

Abstract

Optical measurement techniques are well suited to many heat transfer problems, insofar as they are non-contact and generally non-invasive. Far-field measurements of infrared thermal emission were for a long time the predominant method. But today these techniques have reached their limits: the spatial resolution is not adequate for micro and nanoheat transfer analysis.

In this Chapter, we shall review the main optical techniques devised recently to overcome these limitations. A great many of these techniques operate in a modulated regime, taking advantage of the excellent signal-to-noise ratio provided by lock-in detection, but also exploiting the spatial confinement of the modulated part of the heat obtained in the alternating regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Dilhaire: D'eveloppement d'un interf'erom`etre laser tr`es haute r'esolution pour la caract'erisation de composants micro'electroniques, Ph.D. thesis, University of Bordeaux, France (1994)

    Google Scholar 

  • A. Mandelis: Theory of photothermal wave diffraction and interference in condensed media, J. Opt. Soc. Am. A: Optics Image Science and Vision 6, 298–308 (1989)

    Article  ADS  Google Scholar 

  • J. Opsal, A. Rosencwaig: Thermal wave depth profiling: Theory, J. Appl. Phys. 53, 4240–4246 (1982)

    Article  ADS  Google Scholar 

  • S. K. Lau, D. P. Almond, P. M. Patel: Transient thermal wave techniques for the evaluation of surface coatings, J. Phys. D: Appl. Phys. 24, 428–436 (1991)

    Article  ADS  Google Scholar 

  • H. S. Carslaw, J. C. Jaeger: Conduction of Heat in Solids (Oxford University Press, Oxford 1993)

    Google Scholar 

  • W. J. Parker, R. J. Jenkins, G. L. Abbott, C. P. Butler: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys. 32, 1679 (1961)

    Article  ADS  Google Scholar 

  • P. Cielo, L. A. Utracki, M. Lamontagne: Thermal diffusivity measurements by the converging-thermal-wave technique, Canadian J. Phys. 64, 1172–1177 (1986)

    ADS  Google Scholar 

  • F. Enguehard, D. Boscher, A. Deom, D. Balageas: Measurement of the thermal radial diffusivity of anisotropic materials by the converging thermal wave technique, Mater. Sci. Eng. B: Solid State Materials for Advanced Technology 5, 127–134 (1990)

    ADS  Google Scholar 

  • O. W. Kading, H. Skurk, K. E. Goodson: Thermal conduction in metallized silicon dioxide layers on silicon, Appl. Phys. Lett. 65, 1629–1631 (1994)

    Article  ADS  Google Scholar 

  • A. Mandelis, P. Hess: Progress in photothermal and photoacoustic science and technology. Vol. 6, in Semiconductors and Electronic Materials, vol. PM74 (SPIE Press 1994)

    Google Scholar 

  • F. Formanek, Y. De Wilde, L. Aigouy, W. K. Kwok, L. Paulius, Y. Chen: Nanometer-scale probing of optical and thermal near-fields with an apertureless NSOM, Superlatt. Microstruct. 35, 315–323 (2004)

    Article  ADS  Google Scholar 

  • G. Abstreiter: Micro-Raman spectroscopy for characterization of semiconductor devices, Appl. Surf. Sci. 50, 73–78 (1991)

    Article  ADS  Google Scholar 

  • L. Pavesi, M. Guzzi: Photoluminescence of 1-alloys, J. Appl. Phys. 75, 4779–4842 (1994)

    Article  ADS  Google Scholar 

  • M. Cazzanelli, C. Vinegoni, L. Pavesi: Temperature dependence of the photoluminescence of all-porous-silicon optical microcavities, J. Appl. Phys. 85, 1760–1764 (1999)

    Article  ADS  Google Scholar 

  • E. D. Palik: Handbook of Optical Constants, J. Opt. Soc. Am. A: Optics Image Science and Vision 1 (1984) pp. 1297–1297

    Google Scholar 

  • G. Tessier, S. Hole, D. Fournier: Ultraviolet illumination thermoreflectance for the temperature mapping of integrated circuits, Opt. Lett. 28, 875–877 (2003)

    Article  ADS  Google Scholar 

  • W. J. Scouler: Temperature-modulated reflectance of gold from 2 to 10, Phys. Rev. Lett. 18, 445 (1967)

    Article  ADS  Google Scholar 

  • R. Rosei, D. W. Lynch: Thermomodulation spectra of , , and , Phys. Rev. B 5, 3883 (1972)

    Article  ADS  Google Scholar 

  • G. Tessier, G. Jerosolimski, S. Hole, D. Fournier, C. Filloy: Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials, Rev. Sci. Instrum. 74, 495–499 (2003)

    Article  ADS  Google Scholar 

  • R. Abid, F. Miserey, F. Z. Mezroua: Temperature effect on oxidized silicon reflectivity: Experimental determination of the relative sensitivity; Application to temperature non-contact measurements on the surface of a GTO thyristor in commutation, J. de Phys. III 6, 279–300 (1996)

    Article  ADS  Google Scholar 

  • V. Quintard, G. Deboy, S. Dilhaire, D. Lewis, T. Phan, W. Claeys: Laser beam thermography of circuits in the particular case of passivated semiconductors, Microelectron. Eng. 31, 291–298 (1996)

    Article  Google Scholar 

  • G. Tessier, S. Hole, D. Fournier: Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths, Appl. Phys. Lett. 78, 2267–2269 (2001)

    Article  ADS  Google Scholar 

  • O. B. Wright, R. L. Voti, O. Matsuda, M. C. Larciprete, C. Sibilia, M. Bertolotti: Photothermal probing of inhomogeneously modulated transparent thin films, J. Appl. Phys. 91, 5002–5009 (2002)

    Article  ADS  Google Scholar 

  • S. Dilhaire, S. Grauby, W. Claeys: Calibration procedure for temperature measurements by thermoreflectance under high magnification conditions, Appl. Phys. Lett. 84, 822–824 (2004)

    Article  ADS  Google Scholar 

  • G. Tessier, A. Salhi, Y. Rouillard, F. Genty, J.-P. Roger, D. Fournier: Quantitative thermal imaging of GaInAsSb/AlGaAsSb laser diodes by thermoreflectance, presented at the ICPPP 13, Rio de Janeiro (2004)

    Google Scholar 

  • A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg: Detection of thermal waves through optical reflectance, Appl. Phys. Lett. 46, 1013–1015 (1985)

    Article  ADS  Google Scholar 

  • L. Pottier: Micrometer scale visualization of thermal waves by photoreflectance microscopy, Appl. Phys. Lett. 64, 1618–1619 (1994)

    Article  ADS  Google Scholar 

  • T. Velinov: On analysis of signals from a photothermal microscope, Meas. Sci. Technol. 6, 28–32 (1995)

    Article  ADS  Google Scholar 

  • P. Gleyzes, F. Guernet, A. C. Boccara: Picometric profilometry 2. Multidetector approach and multiplexed lock-in detection, J. Opt. 26, 251–265 (1995)

    Article  ADS  Google Scholar 

  • C. Filloy, G. Tessier, S. Hole, G. Jerosolimski, D. Fournier: The contribution of thermoreflectance to high resolution thermal mapping, Sensor Rev. 23, 35–39 (2003)

    Article  Google Scholar 

  • J. P. Monchalin: Heterodyne interferometric laser probe to measure continuous ultrasonic displacements, Rev. Sci. Instrum. 56, 543–546 (1985)

    Article  ADS  Google Scholar 

  • D. Royer, E. Dieulesaint: Optical probing of the mechanical impulse response of a transducer, Appl. Phys. Lett. 49, 1056–1058 (1986)

    Article  ADS  Google Scholar 

  • D. Royer, E. Dieulesaint, P. Leclaire: Remote sensing of the thickness of hollow cylinders from optical excitation and detection of lamb waves, in (IEEE Ultrasonics symposium, Montreal 1989)

    Google Scholar 

  • B. Cretin, D. Hauden: Joule displacement and thermoelastic microscopies of electronic components with optical probing, presented at the ESREF, Bordeaux (1989)

    Google Scholar 

  • Y. Martin, E. A. Ash: Photo-displacement microscopy using a semiconductor laser, Electron. Lett. 18, 763–764 (1982)

    Article  Google Scholar 

  • J. E. Rothenberg: Observation of the transient expansion of heated surfaces by picosecond photothermal deflection spectroscopy, Opt. Lett. 13, 713–715 (1988)

    Article  ADS  Google Scholar 

  • H. K. Wickramasinghe, Y. Martin, S. Ball, E. A. Ash: Thermodisplacement imaging of current in thin-film circuits, Electron. Lett. 18, 700–701 (1982)

    Article  Google Scholar 

  • B. Cretin, D. Hauden: Thermoacoustic scanning microscope using a laser probe, in (Ultrasonic Symposium 1984)

    Google Scholar 

  • B. Cretin, W. X. Xie, S. Wang, D. Hauden: Practical limitations and improvements, Opt. Commun. 65, 157–162 (1988)

    Article  ADS  Google Scholar 

  • W. Claeys, S. Dilhaire, E. Schaub: Laser probing techniques and methods for the thermal characterization of microelectronic components, in Thermal Management of Electronic Systems (Elsevier, Paris 1998) pp. 227–237

    Google Scholar 

  • W. Claeys, S. Dilhaire, S. Jorez, L. D. Patino-Lopez: Laser probes for the thermal and thermomechanical characterisation of microelectronic devices, Microelectron. J. 32, 891–898 (2001)

    Article  Google Scholar 

  • E. Laffon, D. Dulon, C. Aurousseau, S. Dilhaire, W. Claeys: Organic material concentration in auditory outer hair cells measured by laser interferometry, Cytometry 20, 1–6 (1995)

    Article  Google Scholar 

  • E. Laffon, S. Dilhaire, J. L. Leveque, P. Corcuff: An improved technique for optical interferometric imaging of isolated cells, Cytometry 24, 93–96 (1996)

    Article  Google Scholar 

  • K. Nassim, L. Joannes, A. Cornet, S. Dilhaire, E. Schaub, W. Claeys: Thermomechanical deformation imaging of power devices by electronic speckle pattern interferometry (ESPI), Microelectron. Reliab. 38, 1341–1345 (1998)

    Article  Google Scholar 

  • B. C. Li, L. Pottier, J. P. Roger, D. Fournier, K. Watari, K. Hirao: Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy, J. European Ceramic Soc. 19, 1631–1639 (1999)

    Article  Google Scholar 

  • C. Pelissonnier-Grosjean, D. Fournier, A. Thorel: Thermal resistance of grain boundary interfaces in polycrystalline aluminum nitride, J. de Phys. IV 9, 201–206 (1999)

    Google Scholar 

  • I. Mica, M. L. Polignano, G. Carnevale, P. Ghezzi, M. Brambilla, F. Cazzaniga, M. Martinelli, G. Pavia, E. Bonera: Crystal defects and junction properties in the evolution of device fabrication technology, J. Phys.: Condens. Matter 14, 13403–13410 (2002)

    Article  ADS  Google Scholar 

  • S. Dilhaire, S. Grauby, S. Jorez, L. D. Patino-Lopez, E. Schaub, W. Claeys: Laser diode COFD analysis by thermoreflectance microscopy, Microelectron. Reliab. 41, 1597–1601 (2001)

    Article  Google Scholar 

  • S. Dilhaire, S. Jorez, L. D. Patino-Lopez, W. Claeys, E. Schaub: Laser diode light efficiency determination by thermoreflectance microscopy, Microelectr. J. 32, 899–901 (2001)

    Article  Google Scholar 

  • J. Laconte, C. Dupont, A. Akheyar, J.-P. Raskin, D. Flandre: Symposium on Designe, Test, Integration and Packaging of MEMS and MOEMS (Cannes-Mandelieu 2002)

    Google Scholar 

  • T. Phan, S. Dilhaire, V. Quintard, W. Claeys, J. C. Batsale: Thermoreflectance measurements of transient temperature upon integrated circuits: Application to thermal conductivity identification, Microelectron. J. 29, 181–190 (1998)

    Article  Google Scholar 

  • T. Phan, S. Dilhaire, J. C. Batsale, V. Quintard, W. Claeys: Laser probing determination of the thermal conductivity of integrated circuits dielectric layers, High Temp. High Press. 29, 81–88 (1997)

    Article  Google Scholar 

  • M. Deschamps, O. Poncelet, S. Dilhaire, W. Claeys: Surface acoustic waves at the vacuum–thermoviscoelastic solid interface, Ultrasonics 37, 677–680 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sebastian Volz

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Dilhaire, S., Fournier, D., Tessier, G. Optical Techniques for Local Measurement. In: Volz, S. (eds) Microscale and Nanoscale Heat Transfer. Topics in Applied Physics, vol 107. Springer, Berlin, Heidelberg . https://doi.org/10.1007/11767862_10

Download citation

  • DOI: https://doi.org/10.1007/11767862_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36056-8

  • Online ISBN: 978-3-540-36057-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics