Using Linear Regression Models to Analyse the Effect of Software Process Improvement

  • Joost Schalken
  • Sjaak Brinkkemper
  • Hans van Vliet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4034)


In this paper we publish the results of a thorough empirical evaluation of a CMM-based software process improvement program that took place at the IT department of a large Dutch financial institution. Data of 410 projects collected over a period of four years are analysed and a productivity improvement of about 20% is found. In addition to these results we explain how the use of linear regression models and hierarchical linear models greatly enhances the sensitivity of analysis of empirical data on software improvement programs.


Linear Regression Model Function Point Productivity Index Hierarchical Linear Model Software Process Improvement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model for software, version 1.1. Technical Report CMU/SEI-93-TR-24, DTIC ADA263403, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA (1993), Available from:
  2. 2.
    ISO/IEC: Information technology - software process assessment. Technical Report ISO/IEC TR 15504:1998, International Organization for Standardization/International Electrotechnical Commission (1998)Google Scholar
  3. 3.
    CMMI Product Development Team: CMMI for systems engineering/software engineering/integrated product and process development/supplier sourcing, version 1.1 continuous representation. Technical Report CMU/SEI-2002-TR-011, ESC-TR-2002-011, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA (2000), Available from:
  4. 4.
    Galin, D., Avrahami, M.: Do SQA programs work – CMM works. A meta analysis. In: Amir Tomer, R., Schach, S.R. (eds.) Proceedings of the International Conference on Software - Science, Technology & Engineering (SwSTE 2005), Washington, DC, USA, pp. 95–100. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  5. 5.
    Stapleton, J.: Framework for Business Centred Development: DSDM Manual version 4.1. DSDM Consortium, Ltd., Kent, United Kingdom (2002)Google Scholar
  6. 6.
    Peter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied Linear Statistical Models. 4 edn. WCB/McGraw-Hill, Boston (1996)Google Scholar
  7. 7.
    Bryk, A.S., Raudenbush, S.W.: Hierarchical Linear Models: Applications and Data Analysis methods, 1st edn. Advanced Quantitative Techniques in the Social Sciences, vol. 1. Sage Publications, Newbury Park (1992)Google Scholar
  8. 8.
    Diaz, M., King, J.: How CMM impacts quality, productivity, rework, and the bottom line. CrossTalk: The Journal of Defense Software Engineering 15(3), 9–14 (2002)Google Scholar
  9. 9.
    Diaz, M., Sligo, J.: How software process improvement helped Motorola. IEEE Software 14(5), 75–81 (1997)CrossRefGoogle Scholar
  10. 10.
    Wohlwend, H., Rosenbaum, S.: Software improvements in an international company. In: Proceedings of the 15th International Conference on Software Engineering (ICSE 1993), Washington, DC, USA, pp. 212–220. IEEE Computer Society Press, Los Alamitos (1993)CrossRefGoogle Scholar
  11. 11.
    Oldham, L.G., Putman, D.B., Peterson, M., Rudd, B., Tjoland, K.: Benefits realized from climbing the CMM ladder. CrossTalk: The Journal of Defense Software Engineering 12(9), 7–10 (1999)Google Scholar
  12. 12.
    Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models. Benjamin/Cummings Publishing, Menlo Park (1986)Google Scholar
  13. 13.
    Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn. International Thomson Computer Press, London (1998)Google Scholar
  14. 14.
    Verhoef, C.: Quantifying software process improvement. Technical report, Vrije Universiteit Amsterdam, Amsterdam, NL (2005) (accessed, 05/12/2005), Available from:
  15. 15.
    Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design & Analysis Issues for Field Settings. Rand McNally College Publishing Company, Chicago, IL, USA (1979)Google Scholar
  16. 16.
    McGarry, F., Decker, B.: Attaining level 5 in cmm process maturity. IEEE Software 22(6), 87–96 (2002)Google Scholar
  17. 17.
    Albrecht, A.J.: Measuring application development productivity. In: Proceedings of the Joint SHARE/GUIDE/IBM Applications Development Symposium, pp. 83–92 (1979)Google Scholar
  18. 18.
    Furey, S.: Point: Why we should use function points. IEEE Software 14(2), 28–30 (1997)CrossRefGoogle Scholar
  19. 19.
    Bhattacharyya, G.K., Johnson, R.A.: Statistical Concepts and Methods. Wiley Series in Probability and Statistics. Wiley-Interscience, New York (1977)Google Scholar
  20. 20.
    Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R., Reifer, D.J., Steec, B.: Software Cost Estimation with Cocomo II. Prentice-Hall PTR, Upper Daddle River (2000)Google Scholar
  21. 21.
    Lindley, D.V., Smith, A.F.M.: Bayes estimates for the linear model. Journal of the Royal Statistical Society 34(1), 1–41 (1972)MATHMathSciNetGoogle Scholar
  22. 22.
    Pinheiro, J.C., Bates, D.M.: Mixed Effects Models in S and S-Plus. In: Statistics and Computing, 1st edn. Springer, Berlin (2000)Google Scholar
  23. 23.
    Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3&4), 591–611 (1965)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joost Schalken
    • 1
  • Sjaak Brinkkemper
    • 2
  • Hans van Vliet
    • 1
  1. 1.Department of Computer ScienceVrije UniversiteitAmsterdam
  2. 2.Institute of Information and Computing SciencesUtrecht University 

Personalised recommendations