Non-sequential Behaviour of Dynamic Nets

  • Roberto Bruni
  • Hernán Melgratti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4024)


Dynamic nets are an extension of Petri nets where the net topology may change dynamically. This is achieved by allowing (i) tokens to be coloured with place names (carried on as data), (ii) transitions to designate places where to spawn new tokens on the basis of the colours in the fetched tokens, and (iii) firings to add fresh places and transitions to the net. Dynamic nets have been given step or interleaving semantics but, to the best of our knowledge, their non-sequential truly concurrent semantics has not been addressed in the literature. To fill this gap, we extend the ordinary notions of processes and unfolding to dynamic nets, providing two different constructions: (i) a specific process and unfolding for a particular initial marking, and (ii) processes and unfolding patterns that abstract away from the colours of the token initially available.


Causal Structure Operational Semantic Deterministic Process Process Pattern Graph Transformation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asperti, A., Busi, N.: Mobile Petri nets. Technical Report UBLCS 96-10, Computer Science Department, University of Bologna (1996)Google Scholar
  2. 2.
    Baldan, P., Corradini, A., König, B.: A static analysis technique for graph transformation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 381–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C\(^{\sharp}\). In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 415–440. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Bruni, R., Melgratti, H., Montanari, U.: Extending the zero-safe approach to coloured, reconfigurable and dynamic nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 291–327. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Buscemi, M., Sassone, V.: High-level Petri nets as type theories in the Join calculus. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 104–120. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Conchon, S., Le Fessant, F.: Jocaml: Mobile agents for Objective-Caml. In: Proc. ASA 1999 / MA 1999, pp. 22–29. IEEE, Los Alamitos (1999)Google Scholar
  7. 7.
    Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the Join calculus. In: Proc. POPL 1996, pp. 372–385. ACM Press, New York (1996)CrossRefGoogle Scholar
  8. 8.
    Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Inform. and Comput. 57, 125–147 (1983)MATHMathSciNetGoogle Scholar
  9. 9.
    Gunter, C., Scott, D.: Semantic domains. In: Handbook of Theoretical Computer Science. Formal Models and Sematics, vol. B, pp. 633–674. MIT Press, Cambridge (1990)Google Scholar
  10. 10.
    McMillan, K.L.: Symbolic Model Checking. Kluwer, Dordrecht (1993)MATHGoogle Scholar
  11. 11.
    Melgratti, H.: Models and Languages for Global Computing Transactions. PhD thesis, Computer Science Department, University of Pisa (2005)Google Scholar
  12. 12.
    Meseguer, J., Montanari, U., Sassone, V.: Process versus unfolding semantics for place/transition Petri nets. Theoret. Comput. Sci. 153(1-2), 171–210 (1996)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathematik, Bonn (1962)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roberto Bruni
    • 1
  • Hernán Melgratti
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaItalia

Personalised recommendations