The Synthesis Problem of Netcharts

  • Nicolas Baudru
  • Rémi Morin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4024)


A netchart is basically a Petri net whose places are located at some process and whose transitions are labeled by message sequence charts (MSCs). Two recent papers showed independently that any globally-cooperative high-level MSC corresponds to the behaviors of some communicating finite-state machine — or equivalently a netchart. These difficult results rely either on Thomas’ graph acceptors or Zielonka’s construction of asynchronous automata. In this paper we give a direct and self-contained synthesis of netcharts from globally-cooperative high-level MSCs by means of a simpler unfolding procedure.


Linear Extension Synthesis Problem Initial Node Communication Graph Correct Implementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Baudru, N., Morin, R.: Safe Implementability of Regular Message Sequence Charts Specifications. In: Proc. of the ACIS 4th Int. Conf. SNDP, pp. 210–217 (2003)Google Scholar
  3. 3.
    Baudru, N., Morin, R.: The Pros and Cons of Netcharts. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 99–114. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Baudru, N., Morin, R.: Unfolding Synthesis of Asynchronous Automata. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 46–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bollig, B., Leucker, M.: Message-Passing Automata are expressively equivalent to EMSO Logic. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 146–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Caillaud, B., Darondeau, P., Hëlouët, L., Lesventes, G.: HMSCs as partial specifications.. with pNs as completions. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, p. 125. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific, Singapore (1995)CrossRefGoogle Scholar
  8. 8.
    Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-Node High-Level MSCs: Model-Checking and Realizability. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 657–668. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Genest, B., Muscholl, A., Kuske, D.: A Kleene Theorem for a Class of Communicating Automata with Effective Algorithms. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 30–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.: A theory of regular MSC languages. Information and computation 202, 1–38 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Holzmann, G.J.: Early Fault Detection. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 1–13. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    ITU-TS Recommendation Z.120: Message Sequence Charts Geneva (1996)Google Scholar
  13. 13.
    Lamport, L.: Time, Clocks and the Ordering of Events in a Distributed System. Communications of the ACM 21(7), 558–565 (1978)MATHCrossRefGoogle Scholar
  14. 14.
    Métivier, Y.: On Recognizable Subsets of Free Partially Commutative Monoids. Theor. Comput. Sci. 58, 201–208 (1988)MATHCrossRefGoogle Scholar
  15. 15.
    Morin, R.: On Regular Message Sequence Chart Languages and Relationships to Mazurkiewicz Trace Theory. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 332–346. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: Netcharts: Bridging the Gap between HMSCs and Executable Specifications. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 296–310. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Muscholl, A., Peled, D.: Message sequence graphs and decision problems on Mazurkiewicz traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Ochmański, E.: Regular behaviour of concurrent systems. Bulletin of the EATCS 27, 56–67 (1985)Google Scholar
  20. 20.
    Pratt, V.: Modelling concurrency with partial orders. International Journal of Parallel Programming 15, 33–71 (1986)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Thomas, W.: On Logics, Tilings, and Automata. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 441–454. Springer, Heidelberg (1991)Google Scholar
  22. 22.
    Zielonka, W.: Notes on finite asynchronous automata. RAIRO, Theoretical Informatics and Applications 21, 99–135 (1987)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicolas Baudru
    • 1
  • Rémi Morin
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale de MarseilleUniversité de ProvenceMarseilleFrance

Personalised recommendations