Advertisement

Geist3D, a Simulation Tool for Geometry-Driven Petri Nets

  • Jochen Stier
  • Jens Jahnke
  • Hausi Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4024)

Abstract

Petri Nets have proven useful as a language for expressing distributed control logic. This paper presents a tool that integrates the formalism with virtual reality technology in order to model functioning mechatronic systems in 3D. A virtual environment generates sensor telemetry and reflects the state of actuators by computing the geometric and physical properties of a system and the surrounding environment. Petri Nets, combined with the Python programming language, model control systems in terms of virtual sensors and actuators. This methodology simulates the interactions between the structure and logic of mechatronic systems, allowing for an early verification of designs.

Keywords

Virtual Reality Virtual Environment Mechatronic System Virtual Reality Technology Virtual Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jackson, D., Rinard, M.: Software analysis: a Roadmap. In: Proceedings of the Conference on The Future of Software Engineering, pp. 133–145 (2000)Google Scholar
  2. 2.
    Williams, D., Finke, D., Medeiros, D.J., Traband, M.: Discrete simulation development for a proposed shipyard steel processing facility. In: Proceedings of the 33nd conference on Winter simulation, vol. 1, pp. 882–887 (2001)Google Scholar
  3. 3.
    Kephart, J., Chess, D.: The Vision of Autonomic Computing. Computer Journal 1, 41–50 (2003)Google Scholar
  4. 4.
    Kibira, D., McLean, C.: Manufacturing modeling methods: virtual reality simulation of a mechanical assembly production line. In: Proceedings of the Winter Simulation Conference, pp. 1130–1137 (2002)Google Scholar
  5. 5.
    Maes, P.: Pattie Maes: Modeling adaptive autonomous agents. Artificial Life 1, 9 (1994)Google Scholar
  6. 6.
    Michel, O.: Fundamentals of a Theory of Asynchronous Information Flow. In: Proc. of IFIP Congress, vol. 62, pp. 386–390 (1963)Google Scholar
  7. 7.
    Michel, O.: Webots: Symbiosis Between Virtual and Real Mobile Robots. In: Heudin, J.-C. (ed.) VW 1998. LNCS, vol. 1434, pp. 254–263. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Koenig, N., Howard, A.: Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In: International Conference on Intelligent Robots and Systems, pp. 2149–2154 (2004)Google Scholar
  9. 9.
    Ratzer, A.V., Wells, L., Michael Lassen, H., Laursen, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 450–462. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Antsaklis, P., Koutsoukos, X., Zaytoon, J.: On hybrid control of complex systems: A survey. European Journal of Automation 32, 1023–1045 (1985)Google Scholar
  11. 11.
    Aho, A., Hopcroft, J.: The Design and Analysis of Computer Algorithms. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1974)MATHGoogle Scholar
  12. 12.
    Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri Nets. Massachusetts Institute of Technology (1974)Google Scholar
  13. 13.
    Jensen, K.: Coloured Petri Nets and the Invariant Method. Theoretical Computer Science 14, 317–336 (1981)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Grzeszczuk, R., Terzopoulos, D., Hinton, G.: NeuroAnimator: fast neural network emulation and control of physics-based models. In: SIGGRAPH 1998: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 9–20 (1998)Google Scholar
  15. 15.
    Lindenmayer, A.: Mathematical model for cellular interaction in development, Parts I and II. Journal of Theoretical Biology 18, 280–315 (1968)CrossRefGoogle Scholar
  16. 16.
    Kaminka, G.A., Veloso, M.M., Schaffer, S., Sollitto, C., Adobbati, R., Marshal, A.N., Scholer, A., Tejada, S.: GameBots: The ever-challenging multi-agent research test-bed. ACM Transactions on Computer Graphics, 280–315 (2002)Google Scholar
  17. 17.
    Brauer, W., Gold, R., Vogler, W.: A Survey of Behaviour and Equivalence Preserving Refinements of Petri Nets. In: Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 1–46. Springer, Heidelberg (1991)Google Scholar
  18. 18.
    Balduzzi, F., Giua, A., Seatzu, C.: Modeling and simulation of manufacturing systems with first-order hybrid Petri Nets. International Journal of Production Research 483, 255–282 (2001)CrossRefGoogle Scholar
  19. 19.
    Janneck, J., Esser, R.: Higher-order Petri net modeling— techniques and applications. In: Workshop on Software Engineering and Formal Methods (2001)Google Scholar
  20. 20.
    Kindler, E., Pales, C.: 3D-Visualization of Petri Net models: Concept and Realization. In: Application and Theory of Petri Nets, ATPN 2004, pp. 464–473 (2004)Google Scholar
  21. 21.
    Baldini, F., Bucci, G., Vicario, E.: A Tool Set for Modeling and Simulation of Robotic Workcells. In: Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems, pp. 106–114 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jochen Stier
    • 1
  • Jens Jahnke
    • 1
  • Hausi Müller
    • 1
  1. 1.University of Victoria

Personalised recommendations