Towards Synthesis of Petri Nets from Scenarios

  • Robert Lorenz
  • Gabriel Juhás
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4024)


Given a set of scenarios, we answer the question whether this set equals the set of all executions of a Petri net.

Formally, scenarios are expressed by (isomorphism classes of) labelled partial orders (LPOs), also known as pomsets or partial words. An LPO is an execution of a Petri net if it is a sequentialization of an LPO generated by a process of the net. We propose a definition of regions for a set of LPOs, i.e for a partial language. Given a partial language of scenarios, we prove a necessary and sufficient condition (based on regions) for the partial language of scenarios to be the partial language of executions of a place/transition Petri net. Finally, we prove our notion of regions to be consistent with the notion of regions of trace languages.


Partial Order Binary Relation Isomorphism Class Step Sequence Synthesis Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic Process Mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 48–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  3. 3.
    Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri Nets for Finite Transition Systems. IEEE Trans. Computers 47(8), 859–882 (1998)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Darondeau, P.: Unbounded Petri Net Synthesis. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 413–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. Acta Inf. 33(4), 297–315 (1996)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I: Basic Notions and the Representation Problem. Acta Inf. 27(4), 315–342 (1989)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part II: State Spaces of Concurrent Systems. Acta Inf. 27(4), 343–368 (1989)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Esparza, J., Heljanko, K.: Implementing LTL Model Checking with Net Unfoldings. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 37–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Ford Jr., L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal of Mathematics 8, 399–404 (1955)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Goldberg, A., Rao, S.: Beyond the Flow Decomposition Barrier. Journal of the ACM 45(5), 783–797 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goltz, U., Reisig, W.: The Non-Sequential Behaviour of Petri Nets. Information and Control 57(2-3), 125–147 (1983)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Goltz, U., Reisig, W.: Processes of Place/Transition Nets. LNCS, vol. 154, pp. 264–277.Springer, Heidelberg (1983)Google Scholar
  14. 14.
    Grabowski, J.: On Partial Languages. Fundamenta Informaticae IV.2, 428–498 (1981)Google Scholar
  15. 15.
    Harel, D., Kugler, H., Pnueli, A.: Synthesis Revisited: Generating Statechart Models from Scenario-Based Requirements. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 309–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: A trace semantics for Petri nets. Information and Computation 117(1), 98–114 (1995)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Juhás, G., Lorenz, R., Desel, J.: Can I execute my scenario in your net? In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 289–308. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Karzanov, A.V.: Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Doc. 15, 434–437 (1974)MATHGoogle Scholar
  20. 20.
    Kiehn, A.: On the Interrelationship between Synchronized and Non-Synchronized Behavior of Petri Nets. Journal Inf. Process. Cybern. EIK 24, 3–18 (1988)MATHMathSciNetGoogle Scholar
  21. 21.
    Klose, J., Wittke, H.: An Automata Based Interpretation of Live Sequence Charts. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 512–527. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Lettrari, M., Klose, J.: Scenario-Based Monitoring and Testing of Real-Time UML Models. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 317–328. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Mansurov, N.: Automatic synthesis of SDL from MSC and its applications in forward and reverse engineering. Comput. Lang. 27(1), 115–136 (2001)MATHCrossRefGoogle Scholar
  24. 24.
    Mukund, M.: Petri Nets and Step Transition Systems. Int. J. Found. Comput. Sci. 3(4), 443–478 (1992)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary Transition Systems. Theor. Comput. Sci. 96(1), 3–33 (1992)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Transition systems, event structures and unfoldings. Information and Computation 118(2), 191–207 (1995)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Pratt, V.: Modelling Concurrency with Partial Orders. Int. Journal of Parallel Programming 15, 33–71 (1986)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Roychoudhury, A., Thiagarajan, P.S., Tran, T., Zvereva, V.A.: Automatic Generation of Protocol Converters from Scenario-Based Specifications. In: Proceedings of the 25th IEEE Real-Time Systems Symposium (RTSS 2004), pp. 447–458 (2004)Google Scholar
  29. 29.
    Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Robert Lorenz
    • 1
  • Gabriel Juhás
    • 2
  1. 1.Lehrstuhl für Angewandte InformatikKatholische Universität Eichstätt-IngolstadtEichstättGermany
  2. 2.Faculty of Electrical Engineering and Information TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations