Advertisement

From Petri Nets to Differential Equations – An Integrative Approach for Biochemical Network Analysis

  • David Gilbert
  • Monika Heiner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4024)

Abstract

We report on the results of an investigation into the integration of Petri nets and ordinary differential equations (ODEs) for the modelling and analysis of biochemical networks, and the application of our approach to the model of the influence of the Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signalling pathway. We show that analysis based on a discrete Petri net model of the system can be used to derive the sets of initial concentrations required by the corresponding continuous ordinary differential equation model, and no other initial concentrations produce meaningful steady states. Altogether, this paper represents a tutorial in step-wise modelling and analysis of larger models as well as in structured design of ODEs.

Keywords

Model Check Metabolic Network Extracellular Signal Regulate Kinase Biochemical Network Reachability Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schoeberl, B., Eichler-Jonsson, C., Gilles, E., Muller, G.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology 20, 370–375 (2002)CrossRefGoogle Scholar
  2. 2.
    Kolch, W., Calder, M., Gilbert, D.: When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Letters 579, 1891–1895 (2005)CrossRefGoogle Scholar
  3. 3.
    Murata, T.: Petri nets: Properties, analysis and applications. Proc. of the IEEE 77 4, 541–580 (1989)CrossRefGoogle Scholar
  4. 4.
    Fieber, M.: Design und implementation of a generic and adaptive tool for graph manipulation (in German). Master thesis, BTU Cottbus, Dep. of CS (2004)Google Scholar
  5. 5.
    Starke, P., Roch, S.: INA - The Intergrated Net Analyzer, Humboldt University, Berlin (1999), http://www.informatik.hu-berlin.de/~starke/ina.html
  6. 6.
    Schröter, C., Schwoon, S., Esparza, J.: The Model-Checking Kit. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463–472. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Matsuno, H., Fujita, S., Doi, A., Nagasaki, M., Miyano, S.: Towards pathway modelling and simulation. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 3–22. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Heiner, M., Koch, I.: Petri net based model validation in systems biology. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Cho, K.H., Shin, S.Y., Kim, H.W., Wolkenhauer, O., McFerran, B., Kolch, W.: Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Starke, P.H.: Some properties of timed nets under the earliest firing rule. In: Rozenberg, G. (ed.) APN 1989. LNCS, vol. 424, pp. 418–432. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Lautenbach, K.: Exact liveness conditions of a Petri net class (in German). Technical report, GMD Report 82, Bonn (1973)Google Scholar
  12. 12.
    Popova-Zeugmann, L., Heiner, M., Koch, I.: Time Petri nets for modelling and analysis of biochemical networks. Fundamenta Informaticae 67, 149–162 (2005)MATHMathSciNetGoogle Scholar
  13. 13.
    Chabrier-Rivier, N., Chiaverini, M., Vincent Danos, F.F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325, 25–44 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets. Springer, Heidelberg (2005)MATHGoogle Scholar
  15. 15.
    Lonitz, K.: Hybrid Systems Modelling in Engineering and Life Sciences. Master thesis, Universität Koblenz-Landau (2005)Google Scholar
  16. 16.
    Scheibler, D.: A software tool for design and simulation of continuous Petri nets (in German). Master thesis, BTU Cottbus, Dep. of CS (2006)Google Scholar
  17. 17.
    Mendes, P.: GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput. Applic. Biosci. 9, 563–571 (1993)Google Scholar
  18. 18.
    Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite. SIAM Journal on Scientific Computing 18, 1–22 (1997)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dormand, J.R., Prince, P.J.: A family of embedded runge-kutta formulae. J. Comp. Appl. Math. 6, 1–22 (1980)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kolch, W.: Personal communication (2005)Google Scholar
  21. 21.
    Chen, M., Hofestädt, R.: A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. J. Biomedical Informatics 39(2), 147–159 (2006)CrossRefGoogle Scholar
  22. 22.
    Will, J., Heiner, M.: Petri nets in biology, chemistry, and medicine - bibliography. Technical Report 04/2002, BTU Cottbus, Computer Science (2002)Google Scholar
  23. 23.
    Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra models of signalling pathways. In: Proc. Computational Methods in Systems Biology (CSMB 2005), LFCS, University of Edinburgh, pp. 204–215 (2005)Google Scholar
  24. 24.
    Silva, M., Recalde, L.: Continuization of timed Petri nets: From performance evaluation to observation and control. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 26–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Gilbert
    • 1
  • Monika Heiner
    • 2
  1. 1.Bioinformatics Research CentreUniversity of GlasgowGlasgow, ScotlandUK
  2. 2.Department of Computer ScienceBrandenburg University of TechnologyCottbusGermany

Personalised recommendations