Advertisement

On the Construction of Pullbacks for Safe Petri Nets

  • Eric Fabre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4024)

Abstract

The product of safe Petri nets is a well known operation : it generalizes to concurrent systems the usual synchronous product of automata. In this paper, we consider a more general way of combining nets, called a pullback. The pullback operation generalizes the product to nets which interact both by synchronized transitions and/or by a shared sub-net (i.e. shared places and transitions). To obtain all pullbacks, we actually show that all equalizers can be defined in the category of safe nets. Combined to the known existence of products in this category, this gives more than what we need : we actually obtain that all small limits exist, i.e. that safe nets form a complete category.

Keywords

Commutative Diagram Partial Function Total Function Discrete Event System Concurrent System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)MATHGoogle Scholar
  2. 2.
    Winskel, G.: STACS 1984. LNCS, vol. 166, pp. 140–149. Springer, Heidelberg (1984)Google Scholar
  3. 3.
    Nielsen, M., Winskel, G.: Petri Nets and Bisimulation, BRICS report no. RS-95-4 (January 1995)Google Scholar
  4. 4.
    Winskel, G.: Categories of models for concurrency. In: Brookes, S.D., Winskel, G., Roscoe, A.W. (eds.) Seminar on Concurrency. LNCS, vol. 197, pp. 246–267. Springer, Heidelberg (1985)Google Scholar
  5. 5.
    Winskel, G.: Event structure semantics of CCS and related languages. LNCS, vol. 140. Springer, Heidelberg (1982); also as report PB-159, Aarhus Univ., Denmark (April 1983)Google Scholar
  6. 6.
    Winskel, G.: Petri Nets, Algebras, Morphisms, and Compositionality. Information and Computation 72, 197–238 (1987)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bednarczyk, M.A., Bernardinello, L., Caillaud, B., Pawlowski, W., Pomello, L.: Modular System Development with Pullbacks. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 140–160. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Bednarczyk, M.A., Borzyszkowski, A., Somla, R.: Finite Completeness of Categories of Petri Nets. Fundamenta Informaticae 43(1-4), 21–48 (2000)MATHMathSciNetGoogle Scholar
  9. 9.
    Koenig, B.: Parallel Composition and Unfolding of Petri Nets (Including Some Examples), private communication (2005)Google Scholar
  10. 10.
    McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: Proc. 4th Workshop of Computer Aided Verification, Montreal, pp. 164–174 (1992)Google Scholar
  11. 11.
    Esparza, J.: Model checking using net unfoldings. Science of Computer Programming 23, 151–195 (1994)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Esparza, J., Schröter, C.: Reachability Analysis Using Net Unfoldings. In: Workshop of Concurrency, Specification and Programming. Informatik-Bericht 140, vol. II, pp. 255–270. Humboldt-Universität zu, Berlin (2000)Google Scholar
  13. 13.
    Melzer, S., Römer, S.: Deadlock checking using net unfoldings. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 352–363. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Khomenko, V., Koutny, M., Yakovlev, A.: Detecting State Encoding Conflicts in STG Unfoldings Using SAT. Fundamenta Informaticae 62(2), 221–241 (2004) (Special Issue on Best Papers from ACSD 2003)MATHMathSciNetGoogle Scholar
  15. 15.
    Khomenko, V., Koutny, M., Yakovlev, A.: Logic Synthesis for Asynchronous Circuits Based on STG Unfoldings and Incremental SAT. Fundamenta Informaticae 70(1-2), 49–73 (2006)MATHMathSciNetGoogle Scholar
  16. 16.
    Benveniste, A., Fabre, E., Haar, S., Jard, C.: Diagnosis of asynchronous discrete event systems, a net unfolding approach. IEEE Trans. on Automatic Control 48(5), 714–727 (2003)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Fabre, E., Benveniste, A., Haar, S., Jard, C.: Distributed Monitoring of Concurrent and Asynchronous Systems. Journal of Discrete Event Systems, 33–84 (May 2005) (special issue)Google Scholar
  18. 18.
    Fabre, E.: Distributed Diagnosis based on Trellis Processes. In: 44th Conf. on Decision and Control (CDC), Seville, Spain (December 12-15, 2005)Google Scholar
  19. 19.
    Fabre, E.: Trellis processes: a compact representation for runs of concurrent systems, INRIA research report, no. RR-5554 (March 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eric Fabre
    • 1
  1. 1.IRISA/INRIARennesFrance

Personalised recommendations