Advertisement

Syntax-Driven Private Evaluation of Quantified Membership Queries

  • Aggelos Kiayias
  • Antonina Mitrofanova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3989)

Abstract

Membership queries are basic predicate operations that apply to datasets. Quantifications of such queries express global properties between datasets, including subset inclusion and disjointness. These operations are basic tools in set-theoretic data-mining procedures such as frequent-itemset-mining. In this work we formalize a family of such queries syntactically and we consider how they can be evaluated in a privacy-preserving fashion. We present a syntax-driven compiler that produces a protocol for each query and we show that semantically such queries correspond to basic set operation predicates between datasets. Using our compiler and based on the fact that it is syntax-driven, two parties can generate various privacy-preserving protocols with different complexity behavior that allow them to efficiently and securely evaluate the predicate of interest without sharing information about the datasets they possess. Our compiler sheds new light on the complexity of privacy-preserving evaluation of predicates such as disjointness and subset-inclusion and achieves substantial complexity improvements compared to previous works in terms of round as well as communication complexity. In particular, among others, we present protocols for both predicates that require one-round of interaction and have communication less than the size of the universe, while previously the only one round protocols known had communication proportional to the size of the universe.

Keywords

Communication Complexity Privacy Preserve Homomorphic Encryption Encryption Function Membership Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Chaum, D., Evertse, J.-H., van de Graaf, J.: An Improved Protocol for Demonstrating Possession of Discrete Logarithms and Some Generalizations. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  5. 5.
    Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Damgård, I.B.: Zero-Knowledge Proofs for Finite Field Arithmetic or: Can Zero-Knowledge Be for Free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Damgård, I.B.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Damgård, I.B., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On Monotone Formula Closure of SZK. In: FOCS 1994, pp. 454–465 (1994)Google Scholar
  12. 12.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472 (1985)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Goethals, B., Zaki, M.J.: Advances in Frequent Itemset Mining Implementations: Introduction to FIMI 2003. In: FIMI 2003, Frequent Itemset Mining Implementations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations, Melbourne, Florida, USA, December 19 (2003)Google Scholar
  14. 14.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Laur, S., Lipmaa, H., Mielikäinen, T.: Private Itemset Support Counting. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 97–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Communications of the ACM 39(5), 77–85 (1996)CrossRefGoogle Scholar
  17. 17.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof Systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Goldreich, O.: Secure Multi-Party Computation, (unpublished manuscript 2002), http://www.wisdom.weizmann.ac.il/~oded/pp.html
  20. 20.
    Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109–124. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: The Fairplay project, www.cs.huji.ac.il/labs/danss/FairPlay
  22. 22.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proc. 31st Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, pp. 245–254 (May 1999)Google Scholar
  23. 23.
    Schoenmakers, B., Tuyls, P.: Practical Two-Party Computation Based on the Conditional Gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aggelos Kiayias
    • 1
  • Antonina Mitrofanova
    • 2
  1. 1.Computer Science and EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Computer ScienceRutgers UniversityNew BrunswickUSA

Personalised recommendations