Semantic Annotation Framework to Manage Semantic Heterogeneity of Process Models

  • Yun Lin
  • Darijus Strasunskas
  • Sari Hakkarainen
  • John Krogstie
  • Arne Solvberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4001)


Effective discovery and sharing of process models within and/or across enterprises are important in process model management. A semantic annotation approach has been applied for specifying process semantic heterogeneity in the semantic process model discovery in our previous work. In this paper, the approach is further developed into a complete and systematic semantic annotation framework. Four perspectives are tackled in our framework: basic description of process models (profile annotation), process modeling languages (meta-model annotation), process models (model annotation) and the purpose of the process models (goal annotation). Ontologies, including modeling ontology, domain specific ontology and goal ontology, are used for annotation of process models to achieve semantic interoperability. A set of mapping strategies are defined to guide users to annotate process models.


Modeling Language Domain Ontology Local Goal Semantic Annotation Model Annotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D., Mcllraith, S., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: DAML-S: Web service Description for the Semantic Web. In: Proc. of the 1st Int’l. Semantic Web Conf., LNCS, vol. 2343, pp. 348–363. Springer, Heidelberg (2002)Google Scholar
  2. 2.
    ATHENA Project (IST-2003-2004) (2005) (last accessed: 2006 02 15) (2003),
  3. 3.
    Bourrieres, J.P., Missikoff, M., Berre, A., Doumeingts, G., Piddington, C.: Deliverable D4.2 INTEROP 2nd Workplan (2005) (last accessed: 2006 02 15),
  4. 4.
    Gill, T., Gilliland-Swetland, A., Baca, M.: Introduction to Metadata: Pathways to Digital Information. In: Baca, M. (ed.) Getty Information Institute, Los Angeles, USA (2000)Google Scholar
  5. 5.
    Grangel, R., Chalmeta, R.: A Methodological Approach for Enterprise Modeling of Small and Medium Virtual Enterprises based on UML: Application to a Tile Virtual Enterprise. In: Proc. of Doctoral Symposium in the 1st Int’l Conf. on Interoperability of Enterprise Software and Applications, Geneva, Switzerland (2005)Google Scholar
  6. 6.
    INTEROP Project (last accessed: 2006 02 15) (2006),
  7. 7.
    Krogstie, J., Jørgensen, D.H.: Interactive Models for Supporting Networked Organisations. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 550–563. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Kumar, A., Ciccarese, P., Smith, B., Piazza, M.: Context-Based Task Ontologies for Clinical Guidelines. In: Pisanelli, D.M. (ed.) Ontologies in Medicine, Proc. of Workshop on Medical Ontologies, pp. 81–94. IOS Press, Amsterdam (2004)Google Scholar
  9. 9.
    Leppanen, M.: An Ontological Framework and a Methodical Skeleton for Method Engineering: A Contextual Approach. PhD Thesis at University of Jyvaskyla, Finland (2005)Google Scholar
  10. 10.
    Lin, Y., Strasunskas, D.: Ontology-based Semantic Annotation of Process Templates for Reuse. In: Castro, J., Teniente, E. (eds.) Proc. of the CAiSE 2005 Workshops (EMMSAD Workshop), Porto, Portugal, vol. 1, pp. 593–604 (2005)Google Scholar
  11. 11.
    Lin, Y., Ding, H.: Ontology-based Semantic Web Annotation for Semantic Interoperability of Process Models. In: Proc. of the Int’l. Conf. on Computational Intelligence for Modeling, Control and Automation, Vienna, Austria (2005)Google Scholar
  12. 12.
    Malone, T.W., Crowston, K., Herman, G.A.: Organizing Business Knowledge: The MIT Process Handbook. MIT Press, Cambridge (2003)Google Scholar
  13. 13.
    Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Semantic Markup for Web Services (last accessed: 2006 02 15),
  14. 14.
    Ogden, C., Richards, I.: The Meaning of Meaning. Kegan Paul, London (1923)Google Scholar
  15. 15.
    Patil, A., Oundhakar, S., Sheth, A., Verma, K.: METEOR-S Web Service Annotation Framework. In: Proc. of the 13th Int’l. World Wide Web Conf., pp. 553–562. ACM Press, New York (2004)CrossRefGoogle Scholar
  16. 16.
    Ram, S., Park, J.: Semantic Conflict Resolution Ontology (SCROL): An Ontology for Detecting and Resolving Data and Schema-Level Semantic Conflicts. IEEE Transactions on Knowledge and Data Engineering 16(2), 189–202 (2004)CrossRefGoogle Scholar
  17. 17.
    Sølvberg, A.: Data and What They Refer to. In: Chen, P.P., Akoka, J., Kangassalu, H., Thalheim, B. (eds.) Conceptual Modeling. LNCS, vol. 1565, pp. 211–226. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    UEML Project (IST-2001-34229) (2005) (last accessed: 2006 02 15),
  19. 19.
    van der Aalst, W.M.P., Barros, A.P., ter Hofstede, A.H.M., Kiepuszewski, B.: Advanced Workflow Patterns. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901, pp. 18–29. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yun Lin
    • 1
  • Darijus Strasunskas
    • 1
  • Sari Hakkarainen
    • 1
  • John Krogstie
    • 1
  • Arne Solvberg
    • 1
  1. 1.Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations