Comprehensible Answers to Précis Queries

  • Alkis Simitsis
  • Georgia Koutrika
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4001)


Users without knowledge of schemas or query languages have difficulties in accessing information stored in databases. Commercial and research efforts have focused on keyword-based searches. Among them, précis queries generate entire multi-relation databases, which are logical subsets of existing ones, instead of individual relations. The logical database subset contains not only items directly related to the query selections but also items implicitly related to them in various ways. Earlier work has identified the need of providing the naïve user with meaningful answers to his questions and has suggested the translation of précis query answer in narrative form. In this paper, we present a semi-automatic method that translates the relational output of a précis query into a synthesis of results. We describe a translator engine that uses a template mechanism for generating a précis in a narrative form through a set of reusable templates.


Keyword Query Database Graph Narrative Form Loop Body Query Answer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for keyword-based search over relational databases. In: ICDE, pp. 5–16 (2002)Google Scholar
  2. 2.
    Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural Language Interfaces to Databases - An Introduction. NL Eng. 1(1), 29–81 (1995)Google Scholar
  3. 3.
    Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and browsing in databases using BANKS. In: ICDE, pp. 431–440 (2002)Google Scholar
  4. 4.
    Dusterhoft, A., Thalheim, B.: Linguistic based search facilities in snowflake-like database schemes. DKE 48, 177–198 (2004)CrossRefGoogle Scholar
  5. 5.
    Florescu, D., Kossmann, D., Manolescu, I.: Integrating keyword search into XML query processing. Computer Networks 33(1-6) (2000)Google Scholar
  6. 6.
    Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRank: Ranked keyword search over XML documents. In: SIGMOD, pp. 16–27 (2003)Google Scholar
  7. 7.
    Harris, L.R.: User-Oriented Data Base Query with the ROBOT Natural Language Query System. In: VLDB 1977, pp. 303–312 (1977)Google Scholar
  8. 8.
    Hristidis, V., Gravano, L., Papakonstantinou, Y.: Effcient IR-style keyword search over relational databases. In: VLDB, pp. 850–861 (2003)Google Scholar
  9. 9.
    Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on XML graphs. In: ICDE, pp. 367–378 (2003)Google Scholar
  10. 10.
  11. 11.
    Koutrika, G., Simitsis, A., Ioannidis, Y.: Précis: The essence of a query answer. In: ICDE (2006)Google Scholar
  12. 12.
    Masermann, U., Vossen, G.: Design and implementation of a novel approach to keyword searching in relational databases. In: ADBIS-DASFAA, pp. 171–184 (2000)Google Scholar
  13. 13.
    Metais, E., Meunier, J., Levreau, G.: Database Schema Design: A Perspective from Natural Language Techniques to Validation and View Integration. In: ER, pp. 190–205 (2003)Google Scholar
  14. 14.
    Metais, E.: Enhancing information systems management with natural language processing techniques. DKE 41, 247–272 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Microsoft. SQL Server (2000),
  16. 16.
    Minock, M.: A Phrasal Approach to Natural Language Interfaces over Databases. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 333–336. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Motro, A.: Baroque: A browser for relational databases. ACM Trans. Inf. Syst. 4(2), 164–181 (1986)CrossRefGoogle Scholar
  18. 18.
    Motro, A.: Constructing queries from tokens. In: SIGMOD, pp. 120–131 (1986)Google Scholar
  19. 19.
  20. 20.
    Simitsis, A., Koutrika, G.: Pattern-Based Query Answering. In: PaRMa (2006)Google Scholar
  21. 21.
    Sneiders, E.: Automated Question Answering Using Question Templates That Cover the Conceptual Model of the Database. In: Andersson, B., Bergholtz, M., Johannesson, P. (eds.) NLDB 2002. LNCS, vol. 2553, pp. 235–239. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Storey, V.C., Goldstein, R.C., Ullrich, H.: Naive Semantics to Support Automated Database Design. IEEE TKDE 14(1), 1–12 (2002)Google Scholar
  23. 23.
    Storey, V.C.: Understanding and Representing Relationship Semantics in Database Design. In: NLDB, pp. 79–90 (2001)Google Scholar
  24. 24.
    Toral, A., Noguera, E., Llopis, F., Muńoz, R.: Improving Question Answering Using Named Entity Recognition. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 181–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., Skiadopoulos, S.: A Generic and Customizable Framework for the Design of ETL Scenarios. Information Systems 30(7), 492–525 (2005)CrossRefGoogle Scholar
  26. 26.
    Wang, Q., Nass, C., Hu, J.: Natural Language Query vs. Keyword Search: Effects of Task Complexity on Search Performance, Participant Perceptions, and Preferences. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 106–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alkis Simitsis
    • 1
  • Georgia Koutrika
    • 2
  1. 1.National Technical University of AthensDepartment of Electrical and Computer EngineeringAthensGreece
  2. 2.Department of Computer ScienceUniversity of AthensAthensGreece

Personalised recommendations