On Tuning OWA Operators in a Flexible Querying Interface

  • Sławomir Zadrożny
  • Janusz Kacprzyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4027)


The use of the Yager’s OWA operators within a flexible querying interface is discussed. The key issue is the adaptation of an OWA operator to the specifics of a user’s query. Some well-known approaches to the manipulation of the weights vector are reconsidered and a new one is proposed that is simple and efficient.


Weight Vector Linguistic Term Aggregation Operator Ordered Weighted Average Disjunctive Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kacprzyk, J., Zadrozny: The paradigm of computing with words in intelligent database querying. In: Zadeh, L.A., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems. Part 1. Foundations. Part 2. Applications, pp. 382–398. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Kacprzyk, J., Zadrożny, S.: Computing with words in intelligent database querying: standalone and internet-based applications. Information Sciences (134), 71–109 (2001)Google Scholar
  3. 3.
    Bosc, P., Pivert, O.: SQLf: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems 3(1), 1–17 (1995)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kacprzyk, J., Zikowski, A.: Database queries with fuzzy linguistic quantifiers. IEEE Transactions on System, Man and Cybernetics (SMC-16), 474–479 (1986)CrossRefGoogle Scholar
  5. 5.
    Kacprzyk, J., Zadrożny, S., Ziółkowski, A.: FQUERY III+: A “human consistent” database querying system based on fuzzy logic with linguistic quantifiers. Information Systems (6), 443–453 (1989)Google Scholar
  6. 6.
    Bosc, P., Prade, H.: An introduction to the fuzzy set and possibility theory-based treatment of flexible queries and uncertain or imprecise databases. In: Uncertainty Management in Information Systems, pp. 285–324. Kluwer Academic Publishers, Boston (1996)Google Scholar
  7. 7.
    Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Computers and Mathematics with Applications 9, 149–184 (1983)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Filev, D., Yager, R.R.: On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems 94, 157–169 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    O’Hagan, M.: Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic. In: Proceedings of the IEEE Asilomar Conference on Signals, Systems, Computers, Pacific Grove, USA, pp. 81–89 (1988)Google Scholar
  11. 11.
    Filev, D., Yager, R.R.: Analytic properties of maximum entropy OWA operators. Information Sciences 85, 11–27 (1995)MATHCrossRefGoogle Scholar
  12. 12.
    Fuller, R., Majlender, P.: An analytic approach for obtaining maximal entropy OWA operator weights. Fuzzy Sets and Systems 124(1), 53–57 (2001)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fuller, R., Majlender, P.: On obtaining minimal variability OWA operator weights. Fuzzy Sets and Systems 136(2), 203–215 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Liu, X., Chen, L.: On the properties of parametric geometric owa operator. International Journal of Approximate Reasoning 35, 163–178 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sławomir Zadrożny
    • 1
  • Janusz Kacprzyk
    • 2
  1. 1.Warsaw School of Information TechnologyWarsawPoland
  2. 2.Systems Research InstitutePASWarsawPoland

Personalised recommendations