Reverse Nearest Neighbor Search in Peer-to-Peer Systems

  • Dehua Chen
  • Jingjing Zhou
  • Jiajin Le
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4027)


Given a query point Q, a Reverse Nearest Neighbor (RNN) Query returns all points in the database having Q as their nearest neighbor. The problem of RNN query has received much attention in a centralized database. However, not so much work has been done on this topic in the context of Peer-to-Peer (P2P) systems. In this paper, we shall do pioneering work on supporting distributed RNN query in large distributed and dynamic P2P networks. Our proposed RNN query algorithms are based on a distributed multi-dimensional index structure, called P2PRdNN-tree, which is relying on a super-peer-based P2P overlay. The results of our performance evaluation with real spatial data sets show that our proposed algorithms are indeed practically feasible for answering distributed RNN query in P2P systems.


Leaf Node Near Neighbor Range Query Query Point Neighbor Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Korn, F., Muthukrishnan, S.: Influence Sets Based on Reverse Nearest Neighbor Queries. In: SIGMOD (2000)Google Scholar
  2. 2.
    Yang, C., Lin, K.I.: An Index Structure for Efficient Reverse Nearest Neighbor Queries. In: ICDE (2001)Google Scholar
  3. 3.
    Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse Nearest Neighbor Queries for Dynamic Databases. In: SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (2000)Google Scholar
  4. 4.
    Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery of Influence Sets in Frequently Updated Databases. In: VLDB (2001)Google Scholar
  5. 5.
    Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest Neighbor and Reverse Nearest Neighbor Queries for Moving Objects. In: IDEAS (2002)Google Scholar
  6. 6.
    Korn, F., Muthukrishnan, S., Srivastava, D.: Reverse Nearest Neighbor Aggregates Over Data Streams. In: VLDB (2002)Google Scholar
  7. 7.
    Singh, A., Ferhatosmanoglu, H., Tosun, A.S.: High Dimensional Reverse Nearest Neighbor Queries. In: CIKM (2003)Google Scholar
  8. 8.
    Tao, Y., Papadias, D., Lian, X.: Reverse kNN Search in Arbitrary Dimensionality. In: VLDB (2004)Google Scholar
  9. 9.
    Xia, T., Zhang, D., Kanoulas, E., Du, Y.: On Computing Top-t Most Inuential Spatial Sites. In: VLDB (2005)Google Scholar
  10. 10.
    Yiu, M., Mamoulis, N.: Reverse Nearest Neighbors Search in Ad-hoc Subspaces. In: ICDE (2006)Google Scholar
  11. 11.
    Jagadish, H.V., Ooi, B.C., Vu, Q.H., Zhang, R., Zhou, A.: VBI-Tree: A Peer-to-Peer Framework for Supporting Multi-Dimensional Indexing Schemes. In: ICDE (2006)Google Scholar
  12. 12.
    Mondal, A., Yilifu, Y., Kitsuregawa, M.: P2PR-Tree: An R-Tree-Based Spatial Index for Peer-to-Peer Environments. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 516–525. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Demirbas, M., Ferhatosmanoglu, H.: Peer-to-peer spatial queries in sensor networks. In: P2P (2003)Google Scholar
  14. 14.
    Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-organizing semantic overlay networks. In: SIGCOMM (2003)Google Scholar
  15. 15.
    Lee, J., Lee, H., Kang, S., Choe, S., Song, J.: CISS: An efficient object clustering framework for DHT-based peer-to-peer applications. In: Ng, W.S., Ooi, B.-C., Ouksel, A.M., Sartori, C. (eds.) DBISP2P 2004. LNCS, vol. 3367, pp. 215–229. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Zhang, C., Krishnamurthy, A., Wang, R.Y.: Skipindex: Towards a scalable peer-to-peer index service for high dimensional data. Technical report, Princeton University (2004)Google Scholar
  17. 17.
    Shu, Y., Tan, K.-L., Zhou, A.: Adapting the content native space for load balanced indexing. In: Ng, W.S., Ooi, B.-C., Ouksel, A.M., Sartori, C. (eds.) DBISP2P 2004. LNCS, vol. 3367, pp. 122–135. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: ACM SIGMOD International Conference on Management of Data (1984)Google Scholar
  19. 19.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An efficient and robust access method for points and rectangles. In: ACM SIGMOD International Conference on Management of Data (1990)Google Scholar
  20. 20.
    Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: A dynamic index for multi-dimensional objects. In: VLDB (1987)Google Scholar
  21. 21.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: ACM Annual Conference of the Special Interest Group on Data Communication (2001)Google Scholar
  22. 22.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517 (1975)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hinrichs, K., Nievergelt, J.: The grid file: A data structure designed to support proximity queries on spatial objects. In: Proceedings of the International Workshop on Graphtheoretic Concepts in Computer Science (1983)Google Scholar
  24. 24.
    Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: An index structure for high-dimensional data. In: VLDB (1996)Google Scholar
  25. 25.
    White, D.A., Jain, R.: Similarity indexing with the SStree. In: ICDE (1996)Google Scholar
  26. 26.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB (1997)Google Scholar
  27. 27.
    Sahin, O.D., Gupta, A., Agrawal, D., El Abbadi, A.: A peer-to-peer framework for caching range queries. In: ICDE (2004)Google Scholar
  28. 28.
    Aspnes, J., Shah, G.: Skip graphs. In: Annual ACM-SIAM Symposium on Discrete Algorithms (2003)Google Scholar
  29. 29.
    Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: HyperCup-Hypercubes, Ontologies and efficient search on P2P networks. In: International workshop on agents and peer-to-peer computing (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dehua Chen
    • 1
  • Jingjing Zhou
    • 1
  • Jiajin Le
    • 1
  1. 1.Col. of Computer ScienceUniversity of DonghuaShanghaiPRC

Personalised recommendations