Skip to main content

Using Knowledge Representation Languages for Video Annotation and Retrieval

  • Conference paper
  • 478 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4027)

Abstract

Effective usage of multimedia digital libraries has to deal with the problem of building efficient content annotation and retrieval tools. In particular in video domain, different techniques for manual and automatic annotation and retrieval have been proposed. Despite the existence of well-defined and extensive standards for video content description, such as MPEG-7, these languages are not explicitly designed for automatic annotation and retrieval purpose. Usage of linguistic ontologies for video annotation and retrieval is a common practice to classify video elements by establishing relationships between video contents and linguistic terms that specify domain concepts at different abstraction levels. The main issue related to the use of description languages such as MPEG-7 or linguistic ontologies is due to the fact that linguistic terms are appropriate to distinguish event and object categories but they are inadequate when they must describe specific or complex patterns of events or video entities. In this paper we propose the usage of knowledge representation languages to define ontologies enriched with visual information that can be used effectively for video annotation and retrieval. Difference between content description languages and knowledge representation languages are shown, the advantages of using enriched ontologies both for the annotation and the retrieval process are presented in terms of enhanced user experience in browsing and querying video digital libraries.

Keywords

  • Linguistic Term
  • Semantic Annotation
  • Visual Concept
  • High Level Concept
  • Video Annotation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leonardi, R., Migliorati, P.: Semantic indexing of multimedia documents. IEEE Multimedia 9(2), 44–51 (2002)

    CrossRef  Google Scholar 

  2. Assfalg, J., Bertini, M., Colombo, C., Del Bimbo, A., Nunziati, W.: Semantic annotation of soccer videos: Automatic highlights identification. Computer Vision and Image Understanding 92(2-3), 285–305 (2003)

    CrossRef  Google Scholar 

  3. Yu, X., Xu, C., Leung, H., Tian, Q., Tang, Q., Wan, K.W.: Trajectory-based ball detection and tracking with applications to semantic analysis of broadcast soccer video. In: ACM Multimedia 2003, Berkeley, CA (USA), vol. 3, pp. 11–20 (2003)

    Google Scholar 

  4. Reidsma, D., Kuper, J., Declerck, T., Saggion, H., Cunningham, H.: Cross document ontology based information extraction for multimedia retrieval. In: Supplementary proc. of the ICCS 2003, Dresden (2003)

    Google Scholar 

  5. Mezaris, V., Kompatsiaris, I., Boulgouris, N., Strintzis, M.: Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Transactions on Circuits and Systems for Video Technology 14(5), 606–621 (2004)

    CrossRef  Google Scholar 

  6. Jaimes, A., Tseng, B., Smith, J.R.: Modal keywords, ontologies, and reasoning for video understanding. In: Bakker, E.M., Lew, M., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) CIVR 2003. LNCS, vol. 2728. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  7. Jaimes, A., Smith, J.: Semi-automatic, data-driven construction of multimedia ontologies. In: Proc. of IEEE Int’l. Conference on Multimedia & Expo. (2003)

    Google Scholar 

  8. Benitez, A., Chang, S.: Automatic multimedia knowledge discovery, summarization and evaluation. IEEE Transactions on Multimedia (submitted, 2003)

    Google Scholar 

  9. Strintzis, J., Bloehdorn, S., Handschuh, S., Staab, S., Simou, N., Tzouvaras, V., Petridis, K., Kompatsiaris, I., Avrithis, Y.: Knowledge representation for semantic multimedia content analysis and reasoning. In: European Workshop on the Integration of Knowledge, Semantics and Digital Media Technology (2004)

    Google Scholar 

  10. Dasiopoulou, S., Mezaris, V., Kompatsiaris, I., Papastathis, V.K., Strintzis, M.G.: Knowledge-assisted semantic video object detection. IEEE Transactions on Circuits and Systems for Video Technology 15(10), 1210–1224 (2005)

    CrossRef  Google Scholar 

  11. Hunter, J.: Adding multimedia to the semantic web: Building an MPEG-7 ontology. In: The First Semantic Web Working Symposium, SWWS 2001. Stanford University, California, USA (2001)

    Google Scholar 

  12. Hunter, J.: An RDF schema/DAML+OIL representation of MPEG-7 semantics. Technical Report MPEG Document: ISO/IEC JTC1/SC29/WG11 W7807, ISO/IEC (2001)

    Google Scholar 

  13. Tsinaraki, C., Polydoros, P., Christodoulakis, S.: Interoperability support for ontology-based video retrieval applications. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 582–591. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  14. Tsinaraki, C., Polydoros, P., Christodoulakis, S.: Interoperability of OWL with the MPEG-7 MDS. Technical report, Technical University of Crete / Laboratory of Distributed Multimedia Information Systems and Applications (TUC/MUSIC) (2004)

    Google Scholar 

  15. Bertini, M., Cucchiara, R., Del Bimbo, A., Torniai, C.: Video annotation with pictorially enriched ontologies. In: Proc. of IEEE Int’l. Conference on Multimedia & Expo. (2005)

    Google Scholar 

  16. Bertini, M., Bimbo, A.D., Torniai, C.: Enhanced ontologies for video annotation and retrieval. In: Proceedings of ACM MIR (2005)

    Google Scholar 

  17. Haarslev, V., Möller, R.: Description of the racer system and its applications. In: Proceedings International Workshop on Description Logics (DL 2001), Stanford, USA, August 1-3, pp. 131–141 (2001)

    Google Scholar 

  18. Haarslev, V., Möller, R., Wessel, M.: Querying the semantic web with racer + nrql. In: Proceedings of the KI 2004 International Workshop on Applications of Description Logics (ADL 2004), Ulm, German, September 24 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertini, M., D’Amico, G., Del Bimbo, A., Torniai, C. (2006). Using Knowledge Representation Languages for Video Annotation and Retrieval. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2006. Lecture Notes in Computer Science(), vol 4027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766254_54

Download citation

  • DOI: https://doi.org/10.1007/11766254_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34638-8

  • Online ISBN: 978-3-540-34639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics