A Functional Model for Data Analysis

  • Nicolas Spyratos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4027)


We present a functional model for the analysis of large volumes of detailed transactional data, accumulated over time. In our model, the data schema is an acyclic graph with a single root, and data analysis queries are formulated using paths starting at the root. The root models the objects of an application and the remaining nodes model attributes of the objects. Our objective is to use this model as a simple interface for the analyst to formulate queries, and then map the queries to a commercially available system for the actual evaluation.


Directed Acyclic Graph Functional Model Data Warehouse Product Reference Total Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Gupta, A., Sarawagi, S.,, S.: Modelling Multi-dimensional Databases. IBM Research Report, IBM Almaden Research Center (1995)Google Scholar
  2. 2.
    Agrawal, R., et al.: On the computation of multidimensional aggregates. In: Proceedings 22nd International Conference on Very Large Databases (1996)Google Scholar
  3. 3.
    Arbor Software Corporation, Sunnyvale, CA: Multi-dimensional Analysis: Converting Corporate Data into Strategic Information. White Paper (1993)Google Scholar
  4. 4.
    Codd, E.F.: Providing OLAP (On-Line Analytical Processing) to User Analysts: an IT Mandate. Technical Report, E.F. Codd and Associates (1993)Google Scholar
  5. 5.
    Date, C.J.: An introduction to database systems, 8th edn. Addison-Wesley, Reading (2005)Google Scholar
  6. 6.
    Fagin, R., et al.: Multi-structural databases. In: PODS, June 13-15, 2005, Baltimore, MD (2005)Google Scholar
  7. 7.
    Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A relational aggregation operator generalizing group-by, crosstabs, and subtotals. In: Proceedings of ICDE 1996 (1996)Google Scholar
  8. 8.
    Gyssens, M., Lakshmanan, L.L.: A foundation for Multidimensional databases. In: Proceedings 22nd International Conference on Very Large Databases (1996)Google Scholar
  9. 9.
    Harinarayanan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. SIGMOD Record 25(2), 205–227 (1996)CrossRefGoogle Scholar
  10. 10.
    Kimball, R.: The data warehouse toolkit. J. Wiley and Sons, Inc., Chichester (1996)Google Scholar
  11. 11.
    Li, C., Wang, X.S.: A data model for supporting on-line analytical processing. In: Proceedings Conference on Information and Knowledge Management, pp. 81–88 (1996)Google Scholar
  12. 12.
    Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-Hill, New York (2002)Google Scholar
  13. 13.
    Red Brick Systems White Paper: Star schemes and star join technology. Red Brick Systems, Los Gatos, CA (1995)Google Scholar
  14. 14.
    Spyratos, N.: The Partition Model: A Functional Approach. INRIA Research Report 430 (1985)Google Scholar
  15. 15.
    Spyratos, N.: The partition Model: A deductive database Model. ACM Transactions on Database Systems 12(1), 1–37 (1987)CrossRefGoogle Scholar
  16. 16.
    Spyratos, N.: A Partition Model for Dimensional Data Analysis. LRI Research Report (2006)Google Scholar
  17. 17.
    Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP Databases. SIGMOD Record 28(4), 64–69 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicolas Spyratos
    • 1
  1. 1.Laboratoire de Recherche en InformatiqueUniversité de Paris-SudOrsayFrance

Personalised recommendations