Skip to main content

Dynamically Personalized Web Service System to Mobile Devices

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4027)

Abstract

We introduce a novel personalized web service system through mobile devices. By providing only users’ preferred web pages or smaller readable sections, service elements, the problem of the limitation of resource of mobile devices can be solved. In this paper, the preferred service elements are obtained from the statistical preference transactions among web pages for each web site. In computing the preference, we consider the ratio of the length of each web page and users’ staying time on it. Also, our system dynamically provides the personalized web service according to the different three cases such as the beginning stage, the positive feedback, and the negative feedback. In the experimental section, we demonstrate our personalized web service system and show how much the resource of mobile devices can be saved.

Keywords

  • Mobile Device
  • Bayesian Network
  • Digital Library
  • Service Region
  • Collaborative Filter

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This research was supported by the Ministry of Information and Communication, Korea, under the College Information Technology Research Center Support Program, grant number IITA-2005-C1090-0502-0016.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, M., Marsden, G., Mohd-Nasir, N., Boone, K., Buchanan, G.: Improving Web Interaction on Small Displays. In: Proc. WWW8, vol. 1, pp. 51–59 (1999)

    Google Scholar 

  2. Palm, Inc., Web Clipping Development, http://www.palmos.com/dev/tech/webclipping/

  3. Fox, A., Goldberg, I., Gribble, S.D., Lee, D.C., Polito, A., Brewer, E.A.: A Experience With Top Gun Wingman: A Proxy-Based Graphical Web Browser for the 3Com PalmPilot. In: Conference Reports of Middleware (1998)

    Google Scholar 

  4. ProxiNet, Inc., ProxiWeb: http://www.proxinet.com/

  5. Buyukkokten, O., Garcia-Molina, H., Paepcke, A., Winograd, T.: Power Brower: Efficient Web Browsing for PDAs. In: Proc. CHI 2000, pp. 430–437 (2000)

    Google Scholar 

  6. Kim, J.W., Lee, B.H., Shaw, M.J., Chang, H.L., Nelson, M.: Application of Decision-Tree Induction Techniques to Personalized Advertisements on Internet Storefronts. International Journal of Electronic Commerce 5(3), 45–62 (2001)

    Google Scholar 

  7. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  8. Aggrawall, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proc. ACM SIGMOD Int’l. Conference on Management of Data, pp. 207–216 (1994)

    Google Scholar 

  9. Aggrawall, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. 20th Int’l Conference on Very Large Databases, pp. 478–499 (1994)

    Google Scholar 

  10. Ashrafi, M.Z., Tanizr, D., Smith, K.: ODAM: An Optimized Distributed Association Rule Mining algorithm. IEEE Distributed Systems Online 3(3), 1–18 (2004)

    CrossRef  Google Scholar 

  11. Ciaramita, M., Johnson, M.: Explaining away ambiguity: Learning verb selectional preference with Bayesian networks. In: Proc. Intl. Conference on Computational Linguistics, pp. 187–193 (2000)

    Google Scholar 

  12. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Wordnet: An On-line Lexical Database. International Journal of Lexicography 3(4), 235–312 (1990)

    CrossRef  Google Scholar 

  14. Lee, J.J.: Case-based plan recognition in computing domains. In: Proc. The Fifth International Conference on User Modeling, pp. 234–236 (1996)

    Google Scholar 

  15. Resnick, P., Lacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. Internet Research Report, MIT Center for Coordination Scienc (1994), http://www-sloan.mit.edu/ccs/1994wp.html

  16. Maltz, D.A.: Distributing Information for Collaborative Filtering on Usenet net News. SM Thesis, Massachusetts Institute of Technology, Cambridge, MA (1994)

    Google Scholar 

  17. Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: ACM Conference on Electronic Commerce, 158–166 (1999)

    Google Scholar 

  18. Linden, G., Smith, B., York, J.: Amazon.com Recommendations: Item-To-Item Collaborative Filtering. IEEE Internet Computing 7(1), 76–80 (2003)

    CrossRef  Google Scholar 

  19. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)

    CrossRef  Google Scholar 

  20. Bollacker, K.D., Lawrence, S., Giles, C.L.: A System for Automatic Personalized Tracking of Scientific Literature on the Web. In: Proc. ACM Conference on Digital Libraries, pp. 105–113 (1999)

    Google Scholar 

  21. Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing Digital Libraries with TechLens+. In: ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 228–236 (2004)

    Google Scholar 

  22. Cotter, P., Smyth, B.: Personalization Techniques for the Digital TV world. In: Proc. European Conference on Artificial Intelligence, pp. 701–705 (2000)

    Google Scholar 

  23. Lee, W.P., Yang, T.H.: Personalizing Information Appliances: A Multi-agent Framework for TV Program Recommendations. Expert Systems with Applications 25(3), 331–341 (2003)

    CrossRef  MathSciNet  Google Scholar 

  24. Jeon, Y., Hwang, E.: Automatically Customizing Service Pages on the Web for Mobile Devices. In: Bianchi-Berthouze, N. (ed.) DNIS 2003. LNCS, vol. 2822, pp. 53–65. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  25. Squid Web Proxy Cache, http://www.squid-cache.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kang, S., Park, W., Kim, YK. (2006). Dynamically Personalized Web Service System to Mobile Devices. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2006. Lecture Notes in Computer Science(), vol 4027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766254_35

Download citation

  • DOI: https://doi.org/10.1007/11766254_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34638-8

  • Online ISBN: 978-3-540-34639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics