Skip to main content

The Lookahead Principle for Preference Elicitation: Experimental Results

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4027)

Abstract

Preference-based search is the problem of finding an item that matches best with a user’s preferences. User studies show that example-based tools for preference-based search can achieve significantly higher accuracy when they are complemented with suggestions chosen to inform users about the available choices.

We discuss the problem of eliciting preferences in example-based tools and present the lookahead principle for generating suggestions. We compare two different implementations of this principle and we analyze logs of real user interactions to evaluate them.

Keywords

  • Dominance Relation
  • Preference Model
  • Pareto Optimality
  • Skyline Query
  • Preference Elicitation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balke, W.-T., Güntzer, U.: Multi-objective query processing for database systems. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) VLDB, pp. 936–947. Morgan Kaufmann, San Francisco (2004)

    CrossRef  Google Scholar 

  2. Buckles, B.P., Petry, F.E.: Fuzzy databases in the new era. In: SAC, pp. 497–502 (1995)

    Google Scholar 

  3. Equity, M.S.D.W.: Transportation e-commerce and the task of fulfilment (2000)

    Google Scholar 

  4. Fagin, R.: Fuzzy queries in multimedia database systems. In: PODS 1998: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp. 1–10. ACM Press, New York (1998)

    CrossRef  Google Scholar 

  5. Hwanjo Yu, S.-w.H., Chang, K.C.-C.: Rankfp: A framework for supporting rank formulation and processing. In: ICDE 2005, pp. 514–515 (2005)

    Google Scholar 

  6. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley and Sons, New York (1976)

    Google Scholar 

  7. Kiesling, W.: Foundations of preferences in database systems. In: VLDB 2002, pp. 311–322 (2003)

    Google Scholar 

  8. Kießling, W., Köstler, G.: Preference sql - design, implementation, experiences. In: VLDB, pp. 990–1001 (2002)

    Google Scholar 

  9. Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models: The automated travel assistant. In: Proceedings, User Modeling 1997 (1997)

    Google Scholar 

  10. McNee, S.M., Lam, S.K., Konstan, J.A., Riedl, J.: Interfaces for eliciting new user preferences in recommender systems. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 178–187. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  11. Payne, J., Bettman, J., Johnson, E.: The Adaptive Decision Maker. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  12. Pu, P., Faltings, B.: Enriching buyers experiences: The smartclient approach. In: SIGCHI conference on Human factors in computing systems, pp. 289–296. ACM Press, New York (2000)

    CrossRef  Google Scholar 

  13. Pu, P., Faltings, B.: Decision tradeoff using example-critiquing and constraint programming. Constraints: An International Journal 9(4) (2004)

    Google Scholar 

  14. Pu, P., Faltings, B., Torrens, M.: Effective interaction principles for online product search environments. In: Proceedings of the 3rd ACM/IEEE International Conference on Web Intelligence. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  15. Pu, P., Kumar, P.: Evaluating example-based search tools. In: ACM Conference on Electronic Commerce, EC 2004 (2004)

    Google Scholar 

  16. Pu, P., Viappiani, P., Faltings, B.: Increasing user decision accuracy using suggestions. In: CHI (April 2006) (to appear)

    Google Scholar 

  17. Shimazu, H.: Expertclerk: Navigating shoppers buying process with the combination of asking and proposing. In: Proceedings of the 17 International Joint Conference on Artificial Intelligence (IJCAI 2001), vol. 2, pp. 1443–1448 (2001)

    Google Scholar 

  18. Smyth, B., McGinty, L.: The power of suggestion. In: IJCAI, pp. 127–132 (2003)

    Google Scholar 

  19. Tversky, A.: Judgement under uncertainity: Heuristics and biases (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Viappiani, P., Faltings, B., Pu, P. (2006). The Lookahead Principle for Preference Elicitation: Experimental Results. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2006. Lecture Notes in Computer Science(), vol 4027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766254_32

Download citation

  • DOI: https://doi.org/10.1007/11766254_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34638-8

  • Online ISBN: 978-3-540-34639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics