Skip to main content

Personalized Web Recommendation Based on Path Clustering

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4027)

Abstract

Each user accesses a Website with certain interests. The interest can be manifested by the sequence of each Web user access. The access paths of all Web users can be clustered. The effectiveness and efficiency are two problems in clustering algorithms. This paper provides a clustering algorithm for personalized Web recommendation. It is path clustering based on competitive agglomeration (PCCA). The path similarity and the center of a cluster are defined for the proposed algorithm. The algorithm relies on competitive agglomeration to get best cluster numbers automatically. Recommending based on the algorithm doesn’t disturb users and needn’t any registration information. Experiments are performed to compare the proposed algorithm with two other algorithms and the results show that the improvement of recommending performance is significant.

Keywords

  • Association Rule
  • Cluster Center
  • User Access
  • User Interest
  • Membership Grade

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooley, R., Mobasher, B., Srivastava, J.: Web Mining: Information and Pattern Discovery on the World Wide Web. In: 9th International Conference on Tools with Artificial Intelligence, ICTAI97, Newport Beach, CA, USA, pp. 558–567. IEEE Computer Society, Los Alamitos (1997)

    CrossRef  Google Scholar 

  2. Cooley, R.: The use of Web structure and content to identify subjectively interesting Web usage patterns. ACM Transactions on Internet Technology (TOIT) 3(2), 93–116 (2003)

    CrossRef  Google Scholar 

  3. Nasraoui, O., Frigui, H., Krishnapuram, R.: Extracting Web user profiles using relational competitive fuzzy clustering. International Journal on Artificial Intelligence Tools 9(4), 509–526 (2000)

    CrossRef  Google Scholar 

  4. Mobasher, B., Dai, H., Luo, T.: Discovery and evaluation of aggregate usage profiles for Web personalization. Data Mining and Knowledge Discovery 6(1), 61–82 (2002)

    CrossRef  MathSciNet  Google Scholar 

  5. Enembreck, F., Barthès, J.-P.A.: Agents for collaborative filtering. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS, vol. 2782, pp. 184–191. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Briggs, P., Smyth, B.: On the Use of Collaborative Filtering Techniques for the Prediction of Web Search Result Rank. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 380–383. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  7. Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on Web usage mining. Communications of the ACM 43(8), 142–151 (2000)

    CrossRef  Google Scholar 

  8. Huang, Z.: Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Knowledge Discovery 2(3), 283–304 (1998)

    CrossRef  Google Scholar 

  9. Wang, S., Gao, W., Li, J.T.: Path clustering: discovering the knowledge in the Website. Journal of Computer Research & Development 38(4), 482–486 (2001)

    Google Scholar 

  10. Frigui, H., Krishnapuram, R.: A robust clustering algorithm based on competitive agglomeration and soft rejection of outliers. In: Conference on Computer Vision and Pattern Recognition (CVPR 1996), pp. 550–555. IEEE Computer Society, San Francisco (1996)

    Google Scholar 

  11. Chun, J., Oh, J., Kwon, S.: Simulating the effectiveness of using association rules for recommendation systems. In: AsiaSim 2004, pp. 306–314. Springer, Jeju Island (2005)

    Google Scholar 

  12. Ji, G.L., Sun, Z.H.: An algorithm for mining optimized confidence quantitative association rules. Journal of Southeast University (Natural Science Edition) 31(2), 31–34 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, Y., Lin, H., Yu, Y., Chen, C. (2006). Personalized Web Recommendation Based on Path Clustering. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2006. Lecture Notes in Computer Science(), vol 4027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766254_31

Download citation

  • DOI: https://doi.org/10.1007/11766254_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34638-8

  • Online ISBN: 978-3-540-34639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics