Personalized Web Recommendation Based on Path Clustering

  • Yijun Yu
  • Huaizhong Lin
  • Yimin Yu
  • Chun Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4027)


Each user accesses a Website with certain interests. The interest can be manifested by the sequence of each Web user access. The access paths of all Web users can be clustered. The effectiveness and efficiency are two problems in clustering algorithms. This paper provides a clustering algorithm for personalized Web recommendation. It is path clustering based on competitive agglomeration (PCCA). The path similarity and the center of a cluster are defined for the proposed algorithm. The algorithm relies on competitive agglomeration to get best cluster numbers automatically. Recommending based on the algorithm doesn’t disturb users and needn’t any registration information. Experiments are performed to compare the proposed algorithm with two other algorithms and the results show that the improvement of recommending performance is significant.


Association Rule Cluster Center User Access User Interest Membership Grade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooley, R., Mobasher, B., Srivastava, J.: Web Mining: Information and Pattern Discovery on the World Wide Web. In: 9th International Conference on Tools with Artificial Intelligence, ICTAI97, Newport Beach, CA, USA, pp. 558–567. IEEE Computer Society, Los Alamitos (1997)CrossRefGoogle Scholar
  2. 2.
    Cooley, R.: The use of Web structure and content to identify subjectively interesting Web usage patterns. ACM Transactions on Internet Technology (TOIT) 3(2), 93–116 (2003)CrossRefGoogle Scholar
  3. 3.
    Nasraoui, O., Frigui, H., Krishnapuram, R.: Extracting Web user profiles using relational competitive fuzzy clustering. International Journal on Artificial Intelligence Tools 9(4), 509–526 (2000)CrossRefGoogle Scholar
  4. 4.
    Mobasher, B., Dai, H., Luo, T.: Discovery and evaluation of aggregate usage profiles for Web personalization. Data Mining and Knowledge Discovery 6(1), 61–82 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Enembreck, F., Barthès, J.-P.A.: Agents for collaborative filtering. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS, vol. 2782, pp. 184–191. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Briggs, P., Smyth, B.: On the Use of Collaborative Filtering Techniques for the Prediction of Web Search Result Rank. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 380–383. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on Web usage mining. Communications of the ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  8. 8.
    Huang, Z.: Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Knowledge Discovery 2(3), 283–304 (1998)CrossRefGoogle Scholar
  9. 9.
    Wang, S., Gao, W., Li, J.T.: Path clustering: discovering the knowledge in the Website. Journal of Computer Research & Development 38(4), 482–486 (2001)Google Scholar
  10. 10.
    Frigui, H., Krishnapuram, R.: A robust clustering algorithm based on competitive agglomeration and soft rejection of outliers. In: Conference on Computer Vision and Pattern Recognition (CVPR 1996), pp. 550–555. IEEE Computer Society, San Francisco (1996)Google Scholar
  11. 11.
    Chun, J., Oh, J., Kwon, S.: Simulating the effectiveness of using association rules for recommendation systems. In: AsiaSim 2004, pp. 306–314. Springer, Jeju Island (2005)Google Scholar
  12. 12.
    Ji, G.L., Sun, Z.H.: An algorithm for mining optimized confidence quantitative association rules. Journal of Southeast University (Natural Science Edition) 31(2), 31–34 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yijun Yu
    • 1
  • Huaizhong Lin
    • 1
  • Yimin Yu
    • 1
  • Chun Chen
    • 1
  1. 1.Computer InstituteZhejiang UniversityHangzhouChina

Personalised recommendations