Advertisement

Similarity Between Multi-valued Thesaurus Attributes: Theory and Application in Multimedia Systems

  • Tom Matthé
  • Rita De Caluwe
  • Guy De Tré
  • Axel Hallez
  • Jörg Verstraete
  • Marc Leman
  • Olmo Cornelis
  • Dirk Moelants
  • Jos Gansemans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4027)

Abstract

In this paper, the theoretical aspects of calculating the similarity between sets, and its generalizations multisets, fuzzy sets and fuzzy multisets, is presented. Afterwards, this theory is applied to enhance the facilities for accessing a multimedia system, namely when searching for correspondence between multi-valued attributes, which are coupled with a thesaurus. Furthermore, to allow flexibility in this search, thesauri with similarities defined between the thesaurus terms are considered. As a possible application, the DEKKMMA project is introduced, a project about an audio archive of African music.

Keywords

Similarity Measure Multimedia System Thesaurus Term Lower Cardinality Royal Museum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blizzard, W.D.: The Development of Multiset Theory. Modern Logic 1, 319–352 (1991)MathSciNetGoogle Scholar
  2. 2.
    Blizzard, W.D.: Dedekind multiset and function shells. Theoretical Computer Science 110, 79–98 (1993)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bosc, P., Liétard, L., Pivert, O., Rocacher, D.: Base de donnée - Gradualité et imprécision dans les bases de données: Ensembles flous, requêtes flexibles et interrogation de données mal connues. Ellipses (2004)Google Scholar
  4. 4.
    Jaccard, P.: The distribution of the flora of the alpine zone. New Phytologist 11, 37–50 (1912)CrossRefGoogle Scholar
  5. 5.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, New Jersey (1995)MATHGoogle Scholar
  6. 6.
    Knuth, D.E.: The art of computer programming. In: Knuth, D.E. (ed.) Seminumerical Algorithms, vol. 2. Addison-Wesley, Boston (1981)Google Scholar
  7. 7.
    Li, B., Peizhang, W., Xihui, L.: Fuzzy bags with set-valued statistics. Journal of Computational and Applied Mathematics 15, 811–818 (1988)CrossRefGoogle Scholar
  8. 8.
    Li, B.: Fuzzy bags and applications. Fuzzy Sets and Systems 34, 61–71 (1990)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Liu, Z.-Q., Miyamoto, S. (eds.): Soft computing and human-centered machines. Springer, Tokyo (2000)Google Scholar
  10. 10.
    Manna, Z., Waldinger, R.: The logical basis for computer programming. Deductive reasoning, vol. 1. Addison-Wesley, Boston (1985)Google Scholar
  11. 11.
    Matthé, T., de Tré, G., Hallez, A., de Caluwe, R., Leman, M., Cornelis, O., Moelants, D., Gansemans, J.: A framework for flexible querying and mining of musical audio archives. In: Proc. of First International Workshop on Integrating Data Mining, Database and Information Retrieval IDDI 2005, at DEXA 2005, Copenhagen, Denmark, August 22, pp. 1041–1054 (2005)Google Scholar
  12. 12.
    Miyamoto, S.: Fuzzy sets in information retrieval and cluster analysis. Kluwer Academic Publishers, Dordrecht (1990)MATHGoogle Scholar
  13. 13.
    Miyamoto, S.: Basic operations of fuzzy multisets. Journal of Japanese Society of Fuzzy Theory Systems [in Japanese] 8, 639–645 (1996)Google Scholar
  14. 14.
    Miyamoto, S.: Fuzzy Multisets and Their Generalizations. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 225–236. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Miyamoto, S.: Information clustering based on fuzzy multisets. Information Processing and Management: an International Journal 39(2), 195–213 (2003)MATHCrossRefGoogle Scholar
  16. 16.
    Ramer, A., Wang, C.-C.: Fuzzy multisets. In: Proc. of 1996 Asian Fuzzy Systems Symposium, Kenting, Taiwan, December 11-14, pp. 429–434 (1996)Google Scholar
  17. 17.
    Yager, R.R.: On the theory of bags. International Journal of General Systems 13, 23–37 (1986)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tom Matthé
    • 1
  • Rita De Caluwe
    • 1
  • Guy De Tré
    • 1
  • Axel Hallez
    • 1
  • Jörg Verstraete
    • 1
  • Marc Leman
    • 2
  • Olmo Cornelis
    • 2
  • Dirk Moelants
    • 2
  • Jos Gansemans
    • 3
  1. 1.Dept. of Telecommunications and Information ProcessingGhent UniversityGentBelgium
  2. 2.Dept. of MusicologyGhent UniversityGentBelgium
  3. 3.Dept. of EthnomusicologyRoyal Museum for Central AfricaTervurenBelgium

Personalised recommendations