Fuzzy Query Answering in Motor Racing Domain

  • Stefania Bandini
  • Paolo Mereghetti
  • Paolo Radaelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4027)


Nuances in natural languages can be useful to effectively describe preferences and constraints over a complex and few formalized domain. In this paper we describe the architecture of a query answering system for the domain of motor racing which uses fuzzy logic and domain knowledge in order to carry out searches dealing with vague expression, either as search constraints or as relationship between entities attribute values.


Fuzzy Logic Soft Constraint Parse Tree Query Evaluation Query Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandini, S., Manzoni, S., Sartori, F.: Case memory management: Fuzzy-based knowledge acquisition and retrieval. In: De Baets, B., Fodor, J., Pasi, G. (eds.) Proceedings of EUROFUSE 2002, pp. 167–172 (2002)Google Scholar
  2. 2.
    Yazici, A., George, R., Buckles, B.P., Petry, F.E.: A survey of coneptual and logical data models for uncertainty management. In: Zadeh, L.A., Kacprzyk, J. (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 607–643. Wiley, New York (1992)Google Scholar
  3. 3.
    Bordogna, G., Pasi, G.: Modeling linguistic qualifiers of uncertainty in a fuzzy database. Int. J. Intell. Syst. 15(11), 995–1014 (2000)MATHCrossRefGoogle Scholar
  4. 4.
    Buckles, B.P., Perty, F.E.: A fzzy representation of data for relational databases. Fuzzy Sets and Systems 7, 31–43 (1982)CrossRefGoogle Scholar
  5. 5.
    de Givry, S., Zhang, W. (eds).: Proceedings of the Seventh Interfational Workshop on Preferences and Soft Constraints (Soft 2005) (2005)Google Scholar
  6. 6.
    Mamdani, E.H., Assilian, S.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. on Computer Systems C–26(12), 1182–1191 (1977)CrossRefGoogle Scholar
  7. 7.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasining — part i, ii and iii. Information Sciences 8–9, 199–251, 301–357, 43–80 (1975)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bordogna, G., Pasi, G.: Modeling vagueness in information retrieval. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 207–241. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Abney, S.: Partial parsing via finite-state cascades. In: Workshop on Robust Parsing, 8th European Summer School in Logic, Language and Information, Prague, Czech Republic, pp. 8–15 (1996)Google Scholar
  10. 10.
    Abney, S.: Parsing by chunks. In: Berwick, R., Abney, S., Tenny, C. (eds.) Principle-Based Parsing. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  11. 11.
    Osenova, P., Simov, K.: Between chunk ideology and full parsing needs. In: Proceedings of the Shallow Processing of Large Corpora (SProLaC 2003) Workshop, Lancaster, UK (2003)Google Scholar
  12. 12.
    Shieber, S.M., van Noord, G., Pereira, F.C.N., Moore, R.C.: Semantic head-driven generation. Computational Linguistics 16(1), 30–42 (1990)Google Scholar
  13. 13.
    Shieber, S.M.: An introduction to unification-based approaches to grammar. CSLI Lecture Notes, vol. 4. Chicago U. Press, Chicago (1986)Google Scholar
  14. 14.
    Johnson, M.: Features and formulae. Computational Linguistics 17(2), 131–153 (1991)Google Scholar
  15. 15.
    Hendrix, G., Sacerdoti, E., Sagalowicz, D., Slocum, J.: Developing a natural language interface to complex data. ACM Trasactions on Database Systems 3(2), 105–147 (1978)CrossRefGoogle Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy logic. IEEE Computer 21(4), 83–93 (1988)Google Scholar
  17. 17.
    Zadeh, L.A.: Fuzzy sets. Information. and Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shi, H., Ward, R., Kharma, N.: Expanding the definitions of linguistic hedges. Joint 9th IFSA World Congress and 20th NAFIPS International Conference (2001)Google Scholar
  19. 19.
    Zadeh, L.A.: A fuzzy-set-theoretic interpretation of linguistic hedges. Journal of Cybernetics 2(3), 4–34 (1972)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic, Dordrecht (2000)MATHGoogle Scholar
  21. 21.
    Turunen, E.: Mathematics behind fuzzy logic. Physica Verlag, Heidelberg (1999)MATHGoogle Scholar
  22. 22.
    Holdobler, S., Khang, T.D., Stor, H.P.: A fuzzy description logic with hedges as concept modifiers. In: Phuong, N.H., Nguyen, H.T., Ho, N.C., Santiprabhob, P. (eds.) VJFuzzy 2002, pp. 25–34. InTech, Science and Technics Publishing House (2002)Google Scholar
  23. 23.
    Straccia, U.: Reasoning within fuzzy description logics. Journal of Artifical Intelligence Researches 14, 137–166 (2001)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefania Bandini
    • 1
  • Paolo Mereghetti
    • 1
  • Paolo Radaelli
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità di Milano-BicoccaMilanoItaly

Personalised recommendations