Skip to main content

Fuzzy Query Answering in Motor Racing Domain

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4027)

Abstract

Nuances in natural languages can be useful to effectively describe preferences and constraints over a complex and few formalized domain. In this paper we describe the architecture of a query answering system for the domain of motor racing which uses fuzzy logic and domain knowledge in order to carry out searches dealing with vague expression, either as search constraints or as relationship between entities attribute values.

Keywords

  • Fuzzy Logic
  • Soft Constraint
  • Parse Tree
  • Query Evaluation
  • Query Answering

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandini, S., Manzoni, S., Sartori, F.: Case memory management: Fuzzy-based knowledge acquisition and retrieval. In: De Baets, B., Fodor, J., Pasi, G. (eds.) Proceedings of EUROFUSE 2002, pp. 167–172 (2002)

    Google Scholar 

  2. Yazici, A., George, R., Buckles, B.P., Petry, F.E.: A survey of coneptual and logical data models for uncertainty management. In: Zadeh, L.A., Kacprzyk, J. (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 607–643. Wiley, New York (1992)

    Google Scholar 

  3. Bordogna, G., Pasi, G.: Modeling linguistic qualifiers of uncertainty in a fuzzy database. Int. J. Intell. Syst. 15(11), 995–1014 (2000)

    CrossRef  MATH  Google Scholar 

  4. Buckles, B.P., Perty, F.E.: A fzzy representation of data for relational databases. Fuzzy Sets and Systems 7, 31–43 (1982)

    CrossRef  Google Scholar 

  5. de Givry, S., Zhang, W. (eds).: Proceedings of the Seventh Interfational Workshop on Preferences and Soft Constraints (Soft 2005) (2005)

    Google Scholar 

  6. Mamdani, E.H., Assilian, S.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. on Computer Systems C–26(12), 1182–1191 (1977)

    CrossRef  Google Scholar 

  7. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasining — part i, ii and iii. Information Sciences 8–9, 199–251, 301–357, 43–80 (1975)

    CrossRef  MathSciNet  Google Scholar 

  8. Bordogna, G., Pasi, G.: Modeling vagueness in information retrieval. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 207–241. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  9. Abney, S.: Partial parsing via finite-state cascades. In: Workshop on Robust Parsing, 8th European Summer School in Logic, Language and Information, Prague, Czech Republic, pp. 8–15 (1996)

    Google Scholar 

  10. Abney, S.: Parsing by chunks. In: Berwick, R., Abney, S., Tenny, C. (eds.) Principle-Based Parsing. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  11. Osenova, P., Simov, K.: Between chunk ideology and full parsing needs. In: Proceedings of the Shallow Processing of Large Corpora (SProLaC 2003) Workshop, Lancaster, UK (2003)

    Google Scholar 

  12. Shieber, S.M., van Noord, G., Pereira, F.C.N., Moore, R.C.: Semantic head-driven generation. Computational Linguistics 16(1), 30–42 (1990)

    Google Scholar 

  13. Shieber, S.M.: An introduction to unification-based approaches to grammar. CSLI Lecture Notes, vol. 4. Chicago U. Press, Chicago (1986)

    Google Scholar 

  14. Johnson, M.: Features and formulae. Computational Linguistics 17(2), 131–153 (1991)

    Google Scholar 

  15. Hendrix, G., Sacerdoti, E., Sagalowicz, D., Slocum, J.: Developing a natural language interface to complex data. ACM Trasactions on Database Systems 3(2), 105–147 (1978)

    CrossRef  Google Scholar 

  16. Zadeh, L.A.: Fuzzy logic. IEEE Computer 21(4), 83–93 (1988)

    Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets. Information. and Control 8, 338–353 (1965)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Shi, H., Ward, R., Kharma, N.: Expanding the definitions of linguistic hedges. Joint 9th IFSA World Congress and 20th NAFIPS International Conference (2001)

    Google Scholar 

  19. Zadeh, L.A.: A fuzzy-set-theoretic interpretation of linguistic hedges. Journal of Cybernetics 2(3), 4–34 (1972)

    CrossRef  MathSciNet  Google Scholar 

  20. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  21. Turunen, E.: Mathematics behind fuzzy logic. Physica Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  22. Holdobler, S., Khang, T.D., Stor, H.P.: A fuzzy description logic with hedges as concept modifiers. In: Phuong, N.H., Nguyen, H.T., Ho, N.C., Santiprabhob, P. (eds.) VJFuzzy 2002, pp. 25–34. InTech, Science and Technics Publishing House (2002)

    Google Scholar 

  23. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artifical Intelligence Researches 14, 137–166 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bandini, S., Mereghetti, P., Radaelli, P. (2006). Fuzzy Query Answering in Motor Racing Domain. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2006. Lecture Notes in Computer Science(), vol 4027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766254_25

Download citation

  • DOI: https://doi.org/10.1007/11766254_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34638-8

  • Online ISBN: 978-3-540-34639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics