Using Multiagent Systems to Improve Real-Time Map Generation

  • Nafaâ Jabeur
  • Boubaker Boulekrouche
  • Bernard Moulin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4013)


Thanks to new technological advances, geospatial information is getting easier to disseminate via Internet and to access using mobile devices. Currently, several mapping applications are providing thousands of users worldwide with web and mobile maps generated automatically by extracting and displaying pre-processed data which is stored beforehand in specific databases. Though rapid, this approach lacks flexibility. To enhance this flexibility, the mapping application must determine by itself the spatial information that should be considered as relevant with respect to the map context of use. It must also determine and apply the relevant transformations to spatial information, autonomously and on-the-fly, in order to adapt it to the user’s needs. In order to support this reasoning process, several knowledge-based approaches have been proposed. However, they did not often result in satisfactory results. In this paper, we propose a multiagent-based approach to improve real-time web and mobile map generation in terms of personalization, data generation and transfer. To this end, the agents of our system compete for space occupation until they are able to generate the required map. These agents, which are assigned to spatial objects, generate and transfer the final data to the user simultaneously, in real-time.


Mobile User Multiagent System Spatial Object Space Occupation Spatial Conflict 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jabeur, N., Moulin, B.: A multiagent based approach for the resolution of spatial conflicts. In: European Workshop on Multi-Agent Systems (EUMAS), Barcelona, pp. 333–343 (2004)Google Scholar
  2. 2.
    Arleth, M.: Problems in Screen Map Design. In: Proceedings of the 19th ICA/ACI Conference, Ottawa, pp. 849–857 (1999)Google Scholar
  3. 3.
    Amstrong, M.P.: Knowledge classification and organization. In: Buttenfield, B.P., McMaster, R., Freeman, H. (eds.) Map generalization: making rules for knowledge representation, Harlow, Essex, England Longman Scientific & Technical, pp. 86–102. Wiley, New York (1991)Google Scholar
  4. 4.
    Ruas, A.: Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. Thèse de doctorat. Sciences de l’Information Géographique, Université de Marne La Vallée (1999)Google Scholar
  5. 5.
    Nunes, A., Caetano, M.R., Santos, T.G.: Rule-based generalization of satellite-derived raster thematic maps. Remote Sensing for Environmental Monitoring, GIS Applications and Geology II. Edited by Manfred Ehlers. Proceedings of the SPIE, vol. 4886, pp. 289-297 (1999)Google Scholar
  6. 6.
    Sester, M., Klein, A.: Rule Based Generalization of Buildings for 3D-Visualization. In: Proceedings of the 19th International Cartographic Conference of the ICA, Ottawa, Canada, pp. 214–224 (1999)Google Scholar
  7. 7.
    Weiss, G.: Multiagent Systems. In: Weiss, G. (ed.) A Modern Approach to Distributed Artificial Intelligence, The MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Lamy, S., Ruas, A., Demazeau, Y., Jackson, M., Mackaness, W., Weibel, R.: The application of Agents in Automated Map Generalisation. In: Proceedings of 19th ICA meeting, Ottawa, pp. 160–169 (1999)Google Scholar
  9. 9.
    Jabeur, N., Moulin, B., Gbei, E.: Une approche par compétition d’agents pour la résolution de l’encombrement spatial lors de la généralisation automatique des cartes. In: Journées Francophones des Systèmes Multiagents JFSMA-2003, Tunis, pp. 161–173 (2003)Google Scholar
  10. 10.
    Galanda, M., Weibel, R.: An Agent-Based Framework for Polygonal Subdivision Generalization. In: Richardson, D., van Oosterom, P. (eds.) Advances in Spatial Data Handling. 10th International Symposium on Spatial Data Handling, pp. 121–136. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Baeijs, C.: Systèmes Multi-agents Hybrides pour la Généralisation Cartographique. In: Conférence invitée Rencontres des Jeunes Chercheurs en Intelligence Artificielle, RJCIA 2000, France (2000)Google Scholar
  12. 12.
    Duchêne, C.: Coordination multi-agents pour la généralisation automatique. Bulletin d’information de l’IGN 74(2003/3) (2003)Google Scholar
  13. 13.
    Maozhen, L., Sheng, Z.: Jones, Ch.: Multi-agent Systems for Web-Based Map Information Retrieval. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience, pp. 161–180. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Gbei, E., Moulin, B., Cosma, I., Jabeur, N., Delval, N.: Conception d’un prototype de service Web géolocalisé appliqué à l’industrie récréo-touristique. Revue internationale de géomatique 13, 375–395 (2003)CrossRefGoogle Scholar
  15. 15.
    Jade, JADE Project Home Page (last access 10-12-2005) (2005), Available at:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nafaâ Jabeur
    • 1
    • 2
  • Boubaker Boulekrouche
    • 1
    • 2
  • Bernard Moulin
    • 1
    • 2
  1. 1.Computer Science DepartmentLaval UniversitySte-FoyCanada
  2. 2.Geomatic Research CenterLaval UniversitySte-FoyCanada

Personalised recommendations