Skip to main content

Machine Learning in a Quantum World

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4013))


Quantum Information Processing (QIP) performs wonders in a world that obeys the laws of quantum mechanics, whereas Machine Learning (ML) is generally assumed to be done in a classical world. We initiate an investigation of the encounter of ML with QIP by defining and studying novel learning tasks that correspond to Machine Learning in a world in which the information is fundamentally quantum mechanical. We shall see that this paradigm shift has a profound impact on the learning process and that our classical intuition is often challenged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)

    Google Scholar 

  2. Barenco, A., Berthiaume, A., Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C.: Stabilisation of quantum computations by symmetrisation. SIAM Journal of Computing 26(5), 1541–1557 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)

    Google Scholar 

  4. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Physical Reviews Letters 87(16), article 167902 (2001)

    Article  Google Scholar 

  5. Chiribella, G., Mauro D’Ariano, G., Perinotti, P., Sacchi, M.: Covariant quantum measurements which maximize the likelihood. Physical Reviews A 70, article 61205 (2004)

    Google Scholar 

  6. Ezhov, A.A., Berman, G.P.: Introduction to Quantum Neural Technologies. Rinton Press (2003)

    Google Scholar 

  7. Freund, Y., Shapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters 79, 325–328 (1997)

    Article  Google Scholar 

  9. Hayashi, A., Hashimoto, T., Horibe, M.: Reexamination of optimal quantum state estimation of pure states. Physical Reviews A 72, article 32325 (2005)

    Article  Google Scholar 

  10. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, London (1976)

    Google Scholar 

  11. Herzog, U., Bergou, J.A.: Optimal unambiguous discrimination of two mixed quantum states. Physical Reviews A 71, article 50301 (2005)

    Article  MathSciNet  Google Scholar 

  12. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum mechanical channel. Problems of Information Transmissions 9, 177–183 (1973)

    MathSciNet  Google Scholar 

  13. Horn, D., Gottlieb, A.: The method of quantum clustering. In: Proceedings of the Conference Neural Information Processing Systems (NIPS), pp. 769–776 (2001)

    Google Scholar 

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Peres, A., Wootters, W.K.: Optimal detection of quantum information. Physical Reviews Letters 66(9), 1119–1122 (1991)

    Article  Google Scholar 

  16. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  17. Sasaki, M., Carlini, A.: Quantum learning and universal quantum matching machine. Physical Reviews A 66(2), article 22303 (2002)

    Article  MathSciNet  Google Scholar 

  18. Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem. In: Proceedings of 21st Annual IEEE Conference on Computational Complexity (CCC) (to appear, 2006)

    Google Scholar 

  19. Servedio, R.: Separating quantum and classical learning. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, Springer, Heidelberg (2001)

    Google Scholar 

  20. Servedio, R., Gortler, A.: Equivalences and separations between quantum and classical learnability. SIAM Journal of Computing 33(5), 1067–1092 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Computing 26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  23. Wootters, W.K., Zurek, W.C.: A single quantum cannot be cloned. Nature 66, 802–803 (1982)

    Article  Google Scholar 

  24. Ziman, M., Plesch, M., Bužek, V., Štelmachovič, P.: Process reconstruction: From unphysical to physical maps via maximum likelihood. Physical Reviews A 71, article 22106 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aïmeur, E., Brassard, G., Gambs, S. (2006). Machine Learning in a Quantum World. In: Lamontagne, L., Marchand, M. (eds) Advances in Artificial Intelligence. Canadian AI 2006. Lecture Notes in Computer Science(), vol 4013. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34628-9

  • Online ISBN: 978-3-540-34630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics